Socio-Technical Modeling, Control, and Optimization for Urban Mobility

Anuradha Annaswamy

Active-adaptive Control Laboratory Massachusetts Institute of Technology

Joint Work with Thao Phan, Yue Guan, Eric Tseng, Eric Wingfield, Ling Zhu, and Crystal Wang

Sponsor: Ford-MIT Alliance

Empowered Consumers + Urban Mobility

Example 1: Dynamic Toll-pricing for congestion reduction Example 2: Shared Mobility on Demand using Dynamic Routing and Pricing

EXAMPLE 1: DYNAMIC TOLL PRICING

Motivation: Alleviate Traffic Congestion

(18.000

10:-

15:

Reduction in car traffic

39.000

The inner-city

-26%

33% reduction in inbound car traffic, 30% decrease in minutes of delay experienced

Stockholm time spent in traffic dropped by 33% (morning peak) and 50% (evening peak)

average speeds of 60 mph maintained

8.8 to 13.3% reduction in travel times

drivers save up to 20 minutes avoiding delay in the worst congestion

average speeds of 50 mph maintained 95% of the time, with 85% driver satisfaction

Varying toll prices aids Urban Mobility!

Empowered Consumers and Urban Mobility

(MnPass, Minneapolis, MN)

A Socio-Technical Model

- Traffic model: Accumulator based
- Utility function: Cost and time savings
- Probability of Acceptance population model

Toll-pricing controller: Nonlinear PI

Response to High Input Flow

High input flow is introduced in the middle of the operating period to test the systems' ability to prevent congestion. Our model-based control (blue) is successful in keeping the HOT density low compared to MnPASS (red).

CNTS Workshop, July 8-9, 2019

9

EXAMPLE 2: SHARED MOBILITY ON DEMAND

A Shared Mobility on Demand (SMoDS) Solution

- 1. Request: passengers request shuttle rides with specified pickup/drop-off locations, maximum distances willing to walk.
- 3. Decide: passengers decide whether to accept or decline the offers.

- 2. Offer: the shuttle server distributes offers to passengers with ride details including pickup locations, walking distances, pickup times, drop-off locations, drop-off times, and prices.
- 4. Operate: the shuttle server sends out ride details to passengers.

Leads to a Constrained Optimization Problem

Dynamic Routing

Determine optimal sequence S of routing points R

$$\min_{(S,R)\in S_f\times R_f} C(S,R)$$

Numerical Results (Dynamic Routing; all passengers accept the ride-offer)

A Schematic of the SMoDS Solution

 p_R^s : subjective probability of acceptance framed by R^{\prime}

Conventional Utility Theory

- Several alternatives with utilities
- Corresponding probabilities

$$p_1,..., p_n$$

 $U_{a_1}, ..., U_{a_n}$

 u_1 : Utility function of taking a private car;

Utility function of ride-sharing $\sum_{j=1}^{m} U_{a_i}{}^{j} p_i{}^{j}$ $u_i = \sum_{j=1}^{m} U_{a_i}{}^{j} p_i{}^{j}$ $u_i = \int_{t_p^1}^{t_p^2} U_a(\tau) p_i(\tau) d\tau$ ar; u_n : Utility function of taking a bus

Not adequate if uncertainty is large

Behavioral Dynamics of Human Beings: Prospect Theory

• In prospect theory*, the utility of the i^{th} option

$$u_i = \sum_{j=1}^m V(u_i{}^j)\pi(p_i{}^j)$$

- Human beings are irrational in two ways:
 - 1. How do we perceive utility $V(u_i^{\ j})$: loss aversion losses hurt more than the benefit of gains
 - 2. How do we assess probability $\pi(p_i^{j})$: overreact to small probability events and underreact to large probability events

* Kahneman and Tversky, 1992 CNTS Workshop, July 8-9, 2019

Irrationality – Loss Aversion

Loss aversion: losses hurt more than gains feel good

$$V(u_{i}^{j}) = \begin{cases} (u_{i}^{j} - R)^{\beta^{+}}, & \text{if } u_{i}^{j} > R \\ -\lambda (R - u_{i}^{j})^{\beta^{-}}, & \text{if } u_{i}^{j} < R \end{cases}$$

- Framing effects: *R* is the reference point of the framing, where people feel neutral, differentiate gain from loss $(\lambda > 1)$
- Example: it is better to not have a \$5 loss than to gain \$5.

El Rahi et al., *Prospect Theory for Smart Grid*, 2017.

Irrationality – Overreact to Small Probability

• Overreact to small probability events and underreact to large probability events

$$\pi(p_i^{j}) = \exp(-(-lnp_i^{j})^{\alpha}), \qquad \alpha < 1$$

El Rahi et al., *Prospect Theory for Smart Grid*, 2017.

• Example: people would not play a lottery with a 1% chance to win \$100K and a 99% chance to lose \$1K

Prospect Theory for Shared Mobility

• The utility function is a combination of time and price:

$$u = a + b_p T_{walk} + b_w T_{wait} + b_r T_{ride} + \gamma \rho$$

• $\tau \in [t_p^1, t_p^2], u: u(\tau)$
 $U_R^s \models \int_{-\infty}^R V(u) \frac{d}{du} \{\pi[F_U(u)]\} du + \int_R^{\infty} V(u) \frac{d}{du} \{-\pi[1 - F_U(U)]\} du$

- *R*: reference
- $F(\tau) = \int_{-\infty}^{\tau} df(\tau)$ Cumulative Distribution Function (CDF)
 - Extract from demand pattern and historical data

 $-F(\tau)$ exists but unknown Objective probability of acceptance

$$p^o = \frac{e}{e^{U^o} + e^{A^o}}$$

 U^o and A^o : objective utility of the SMoDS and the alternative

Subjective probability of acceptance $p_R^S = \frac{e^{U_R^S}}{e^{U_R^S} + e^{A_R^S}}$ U_R^S and A_R^S : subjective utility of the SMoDS and the alternative

Implication 1 – Fourfold Pattern of Risk Attitudes

Fourfold pattern of risk attitudes

- a) Risk averse over high probability gains
- b) Risk seeking over high probability losses
- c) Risk seeking over low probability gains
- d) Risk averse over low probability losses

Conclusions:

Quantification of the qualitative statements

- the presence of risk seeking passengers gives flexibility in increasing tariffs;
- the presence of risk averse passengers requires additional constraints on tariffs.

- Truncated Poisson distribution with two outcomes $\underline{x} + b\gamma$ and $\overline{x} + b\gamma$
- Relative Attractiveness RA = $(U^o - A^o) - (U_R^s - A_R^s)$

Implication 2 – Strong Risk Aversion over Mixed Prospects

Mixed prospects: uncertain prospects whose portfolio of outcomes involves both losses and gains (ex. $R = \overline{U}$)

Conclusions:

- **1.** There exists λ and γ s. t. $p_{\overline{U}}^s < p^o$
- 2. The dynamic tariffs needs to be suitably designed so as to compensate for these perceived losses for this type of CPT passenger.
- $R = \overline{U}$
- p_R^s and p^o versus γ

Implication 3 – Self Reference

Self reference: $R = \overline{U}$ for the uncertain prospect

(compare with $R = A^o$ for the certain prospect)

Conclusions:

- 1. $\forall \gamma, p^s_{\mathbb{E}_{f_H}(U)} \ge p^s_{A^o}$, i.e., the SMoDS is more attractive against the alternative if R = \overline{U} rather than $R = A^o$.
- $R = \overline{U}$ implies that the passengers are already subscribed the SMoDS, hence have 2. higher willingness to pay
- Invariant with $f_X(x)$ 3.

Next step: Towards The Overall SMoDS Solution

 p_R^s : subjective probability of acceptance framed by R

Summary

- Socio-technical modeling, optimization and control
 - Empowered consumers present new opportunities
- New methodologies
 - Transactive Control for Dynamic Toll Pricing*
 - Prospect Theory for Dynamic Pricing***
- Ongoing work
 - Fine-tune PT based ensemble models of riders
 - Validate SMoDS

* A.M. Annaswamy, Y. Guan, E.H. Tseng, Z. Hao, T. Phan, and D. Yanakiev, Transactive Control in Smart Cities. Proceedings of the IEEE, Special Issue on Smart Cities, 2017.

**Y. Guan, A.M. Annaswamy, and E. H. Tseng, A Novel Dynamic Routing Framework for Shared Mobility Services, ACM Transactions, Special Issue on Cyber-Physical Systems in Transportation, 2019.

***Y. Guan, A.M. Annaswamy, and E.H. Tseng, Cumulative Prospect Theory Based Dynamic Pricing for Shared Mobility on Demand Services, 2019.

Thank you!