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Year 2050: The hope of self-driving cars

* Traffic accidents:
— 37,000 fatalities

— 41% deaths of young adults
(ages 15-24)

— 949 of serious crashes

* Greenhouse gas emissions:

caused by human error — 28% from transportation
. Congestion: * Access to mobility:
— 6.9 billion hours wasted 30% of population
— 3.1 billion gallons of fuel wasted — 20% youth or elderly
(160$B) — 10% disabled (ages 18-64)

U.S. Energy Information Administration, 2017; U.S. Census Bureau, 2017.



Years 2019 to 2049: Integrating autonomy

Transportation in the US
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How can we gain understanding for integrating
autonomy into complex systems?

In particular: traffic congestion.



Long-standing control challenges

CAVs

Time

v

System complexity

Highly complex non-linear
delayed dynamics

Human behavior modeling
Large-scale, heterogeneity
Computational cost

Data restrictions

» Expensive to collect data
 Nodataonthefuture

« Expensive totest/deploy
* Limited benchmarks



Integrating autonomy as control___
B | Piatooning

Eco-driving

Approach for deriving insights:
* Trade precision for complexity o G
* Leverage compute and system decompositjén B | ve-emphasized performance

. Leverage simulation to overcome data
restrictions ] Vehicle right-sizing

Changed mobility services

Deep reinforcement learning

[ICLR18, T-RO18, CoRL18,
ICRA18,ITSC17,ITSC17] Higher highway speeds

Convex optimization
[ISTTT15, TR-C15, CDC15, T-ITS18]

Travel cost reduction

New user groups
Combinatorial optimization B e o e e e
[ITSC16, ITSC16, T-ASE18] Changes in energy consumption due to
Wadud, et al. TR-A, 2016. TR-A; U.S. Energy Information Administration, 2017. vehicle automation (%)




Urban networks

Setting: ~2000 vehicles

Dynamics:

e cascaded nonlinear
systems

* bottlenecks
* multi-lane merges
« toll plazadynamics

Wu, et al. IEEE ITSC, 2017; Wu, et al. [EEE T-RO, in reta
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Traffic LEGO blocks

Benchmarks for autonomy in transportation

Single-lane Multi-lane Intersecﬂon On/off-ramp
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Signalized

Bottleneck Grid network intersection

Wu, et al. IEEE ITSC, 2017; Wu, et al. IEEE T-RO, in review; Vinitsky, Kreidieh, ..., Wu, et §l. CoRL, 2(§1.8.




Traffic jams

Sugiyama, et al.
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Traffic jams

Sugiyama, et al.

—t - A
1955 900 papers qm PDEs for traffic 2008 2019
Partial differential '
equations (PDE)

Setting: 22 human drivers
Instructions: drive at 19 mph.

No traffic lights, stop signs,
lane changes.

Traffic jams still form.

Video credits: NewScientist.com




Deep reinforcement learning (RL)

state s; A Decisions in urban systems:
9| ent I

reward 7y J Goal: Vehicle accelerations
action a¢ | |aarn policy 7: S — A Tactical maneuvers
Sea1 to maximize reward Transit schedules
T—l—l[ Environment ]<— H Q Traffic lights
max [E E r(st,ar)|mg Land use
0 Parking

Global rewards , =0/ 2] Toll
A oci Cumulative rewards, Policy parameters olling

verage velocity returns (deep neural network)

Energy consumption
. I EEspcats:

Travel time - !

Safety, comfort

|
DQN (2015) TRPO (2015)  AlphaGo (2016)




Wu, et al.

Single-lane control with RL oo R

— y
1955 Sugiyama, et al. 2008 2019

Setting: 1 AV, 21 human ool _axg

Experiment

» Goal: maximize average velocity
* Observation: relative vel and headway
* Action: acceleration

* Policy: multi-layer perceptron (MLP) Automated
» Learningalgorithm: policy gradient

Observed
Results L
o 1AV:+49% average velocity | & Unobserved

* First near-optimal controller for single-lane
* Uniform flow at near-optimal velocity
* Generalizes to out-of-distribution densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, 2018




Single-lane: dynamical system equilibria

Average velocity vs traffic density

Human driver model T S ---- Stop-and-go stable limit cycle
6 \\\ ---- Uniform flow unstable equilibrium
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WU, et al. CoRL, 2017;

Wu, et al. IEEE T-RO, in review; Treiber, et al. Physical Review E, 2000.

=== Vebhicle density (veh/m)



Single-lane: state of the art policy

State of the art

Proportional-integral
(PI) controller

with saturation
[Stern, et al. 2018]

WU, et al. CoRL, 2017;

(8] o

Average velocity (m/s) —

Average velocity vs traffic density

Stop-and-go stable limit cycle
Uniform flow unstable equilibrium
Pl with saturation controller
Calibration density for PI controller

MLP controller (ours)
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Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018
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Single-lane: learned policy via deep RL

State of the art

Proportional-integral
(PI) controller

with saturation
[Stern, et al. 2017/]

Our results
* Near-optimal

 (Generalizes to
out-of-distribution
traffic densities

WU, et al. CoRL, 2017;

Average velocity vs traffic density
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Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018
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Multi-lane traffic

Dynamics: mixed discrete-continuous
cascaded nonlinear systems

Techniques:

Partial differential equations
Hybrid systems

Formal methods

Model predictive control

Lane-changing in traffic streams.
Laval, Daganzo. TR-B, 2006.

General lane-changing model MOBIL for Multi-lane Reduction: A Stochastic
car-following models. Single-lane Model for Lane Changing.
Kesting, et al. TRR, 2007. Wu, et al. ITSC, 2017.

Wu, et al. IEEET-RO, 2018



Multi-lane: mixed autonomy

Setup: 1 AV, 41 human Ve et

Experiment
» (Goal: maximize average velocity
» (Observation:

following headways, velocity Automated
» Action: acceleration and lane change -~ Observed
Results & Unobserved
» First stabilizing controller for multi- |

lane traffic

* Insight: Asingle AV can stabilize
multiple lanes of traffic

« Emergent traffic break

Wou, et al. IEEET-RO, 2018



Multi-lane: traffic break

Setup: 1 AV, 41 human

Experiment
» Goal: maximize average velocity

* Observation:
following headways, velocity

» Action: acceleration and lane change

Results

» First stabilizing controller for multi-
lane traffic

* Insight: A single AV can stabilize A trafﬁc break foundin .the wild
multiple lanes of traffic (California Interstate Highway 8)

* Emergent traffic break
Wu, et al. IEEET-RO, 2018




Traffic LEGO blocks

Benchmarks for autonomy in transportation

Single-lane Multi-lane Intersecﬂon On/off-ramp
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Signalized

Bottleneck Grid network intersection

Wu, et al. IEEE ITSC, 2017; Wu, et al. IEEE T-RO, in review; Vinitsky, Kreidieh, ..., Wu, et §l. CoRL, 2(§1.8.




San Francisco Bay Bridge

Multi-lane merge

Wou, et al. IEEE T-RO, in review.



Core problem: traffic bottleneck &

Eugene Vinitsky

Setting: No AVs /720 veh/hr
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Phenomenon: capacity drop

Setting: 10% AVs 1020 veh/hr
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40% improvement

DyEimes Avoids capacity drop

e Fourlanes = Two lanes = One

» Cascaded nonlinear systems with right-of-way dynamics model, merge conflicts,
and excessive, fluctuating inflow

Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018



Integrating autonomy: current & future
9,

Operationalizing Scalable RL for Understanding
Insights for control networked systems adversarial driving

™ Microsoft

peel £
-y

Coping with Scalable Urban decision
distribution shift behavior modeling support systems




Policy transfer usermnc

boost -
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Uncertainty quantification and mitigation

Aravind Rajeswaren

High-dimensional control: variance reduction for policy gradient via

Theorem (bias-free state-action baselines)

State-action baselines of the form b:(s:,a; *) are bias-free:

g=E ZV@ log Wg(ai|st) (R(st, at) — b;(st, at_i))

=1

Door Opening (24-dim)

00 Previous SOTA:
Greensmith, et al., 2004
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Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.

action-dependent baselines




Integrating autonomy into urban systems

Challenge: Findings: \ Flow: open source \
Vast uncertainty in future urban « Automatically discovered oroject to enable RL
systems due to autonomy. traffic controllers for traffic control
Apbroach: *Small % of AV.5 great.ly affect flow-project.github.io
—L. ) traffic dynamics, which in turn,

Deep reinforcement learning affects all parts of the urban [ Flow )

(RL) provides understanding cvstem Agent

for integration of autonomy. 4 ' 5-10% AVs —

state S,T reward 7y ¢ action a;

Environment

A * 6;9

* @

Task designer
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> MW 40% Traffic LEGOs Cathy Wu I I I ey
cathywu@mit.edu I I
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