Integrating Autonomy into Urban Systems A Reinforcement Learning Perspective

Cathy Wu | Assistant Professor CEE, IDSS, LIDS

NSF Workshop Control for Networked Transportation Systems, Philadelphia, 2019

6

Year 2050: The hope of self-driving cars

- Traffic accidents:
 - 37,000 fatalities
 - 41% deaths of young adults (ages 15-24)
 - 94% of serious crashes caused by human error
- Congestion:
 - 6.9 billion hours wasted
 - 3.1 billion gallons of fuel wasted (160\$B)

- Greenhouse gas emissions:
 - 28% from transportation
- Access to mobility: 30% of population
 - 20% youth or elderly
 - 10% disabled (ages 18-64)

U.S. Energy Information Administration, 2017; U.S. Census Bureau, 2017.

Years 2019 to 2049: Integrating autonomy

How can we gain understanding for integrating autonomy into complex systems?

In particular: traffic congestion.

System complexity

- Highly complex non-linear delayed dynamics
- Human behavior modeling
- Large-scale, heterogeneity
- Computational cost

Data restrictions

- Expensive to collect data
- No data on the future
- Expensive to test / deploy
- Limited benchmarks

Urban networks

San Francisco Bay Bridge

Setting: ~2000 vehicles

Dynamics:

- cascaded nonlinear systems
- bottlenecks
- multi-lane merges
- toll plaza dynamics

Traffic LEGO blocks Benchmarks for autonomy in transportation

he Mathematical Societ

Deep reinforcement learning (RL)

Single-lane control with RL Stern, et al.

1955

Setting: 1 AV, 21 human

Experiment

- Goal: maximize average velocity
- **Observation**: relative vel and headway
- Action: acceleration
- **Policy**: multi-layer perceptron (MLP)
- Learning algorithm: policy gradient

Results

- 1 AV: +49% average velocity
- First near-optimal controller for single-lane
- Uniform flow at **near-optimal velocity**
- Generalizes to out-of-distribution densities

Wu, et al. CoRL, 2017; **Wu**, et al. IEEE T-RO, 2018

2017 Sugiyama, et al. 2008 2019 AV off Automated Observed \mathbf{A} Unobserved $\overline{\mathbf{A}}$

Wu, et al.

Single-lane: dynamical system equilibria

Average velocity vs traffic density

Human driver model Intelligent Driver Model (IDM) [Treiber, et al. 2000]

Wu. et al. CoRL. 2017:

Single-lane: state of the art policy

State of the art Proportional-integral (PI) controller with saturation [Stern, et al. 2018]

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

Single-lane: learned policy via deep RL

State of the art

Proportional-integral (PI) controller with saturation [Stern, et al. 2017]

Our results

- Near-optimal
- Generalizes to out-of-distribution traffic densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

Multi-lane traffic

Dynamics: mixed discrete-continuous cascaded nonlinear systems

Techniques:

- Partial differential equations
- Hybrid systems
- Formal methods
- Model predictive control

Lane-changing in traffic streams. Laval, Daganzo. TR-B, 2006.

General lane-changing model MOBIL for car-following models.

Kesting, et al. TRR, 2007.

Multi-lane Reduction: A Stochastic Single-lane Model for Lane Changing. Wu, et al. ITSC, 2017.

Multi-lane: mixed autonomy

Setup: 1 AV, 41 human

Experiment

- Goal: maximize average velocity
- Observation: following headways, velocity
- Action: acceleration and lane change

Results

- First stabilizing controller for multilane traffic
- **Insight**: A single AV can stabilize multiple lanes of traffic
- Emergent traffic break

Wu, et al. IEEE T-RO, 2018

Multi-lane: traffic break

Setup: 1 AV, 41 human

Experiment

- Goal: maximize average velocity
- Observation: following headways, velocity
- Action: acceleration and lane change

Results

- First stabilizing controller for multilane traffic
- **Insight**: A single AV can stabilize multiple lanes of traffic
- Emergent traffic break

Wu, et al. IEEE T-RO, 2018

A traffic break found in the wild (California Interstate Highway 8)

Traffic LEGO blocks Benchmarks for autonomy in transportation

San Francisco Bay Bridge

Wu, et al. IEEE T-RO, in review.

Core problem: traffic bottleneck

Eugene Vinitsky

Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018

Integrating autonomy: current & future

Operationalizing insights for control

Scalable RL for networked systems

Understanding adversarial driving

Scalable behavior modeling

Urban decision support systems

Policy transfer

Policies trained on ring roads, then deployed on straight roads

Kreidieh. Wu. Baven. ITSC 2018.

- Successful direct transfer!
- Closed \rightarrow open networks

Uncertainty quantification and mitigation

Aravind Rajeswaren

High-dimensional control: variance reduction for policy gradient via action-dependent baselines

Theorem (bias-free state-action baselines)

State-action baselines of the form $b_i(s_t, a_t^{-i})$ are bias-free:

$$g = \mathbb{E}\left[\sum_{i=1}^{n} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t) \left(R(s_t, a_t) - b_i(s_t, a_t^{-i}) \right) \right]$$

Door Opening (24-dim) 100 **Previous SOTA:** Greensmith, et al., 2004 Percentage 80 60 Success 40 20 $B_i = V(s) \forall i$ $B_i = Q(s, [\mu_i, a_{-i}])$ (Ours) 0 25 175 125 150 200 Tterations

Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.

Integrating autonomy into urban systems

Challenge:

Vast uncertainty in future urban systems due to autonomy.

Approach: Deep reinforcement learning (RL) provides understanding for integration of autonomy.

Findings:

- Automatically discovered traffic controllers
- Small % of AVs greatly affect traffic dynamics, which in turn, affects all parts of the urban system.
 5-10% AVs

+49% +30% +142% +60% +40% Traffic LEGOs **Flow**: open source project to enable RL for traffic control flow-project.github.io

Cathy Wu

cathywu@mit.edu

Cathy Wu - cathywu@mit.edu

Collaborators & Partners

Microsoft

RAIR

Berkeley DeepDrive

Kathy Jang Nishant Kheterpal Leah Dickstein Ananth Kuchibhotla Nathan Mandi

Eugene Vinitsky Aboudy Kreidieh Kanaad Parvate Rocky Duan Aravind Rajeswaren

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH