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Year 2050: The hope of self-driving cars

•  Traffic accidents:
–  37,000 fatalities

–  41% deaths of young adults  
(ages 15-24)

–  94% of serious crashes  
caused by human error

•  Congestion:
–  6.9 billion hours wasted

–  3.1 billion gallons of fuel wasted 
(160$B)

•  Greenhouse gas emissions:
–  28% from transportation

•  Access to mobility: 
30% of population
–  20% youth or elderly

–  10% disabled (ages 18-64)

U.S. Energy Information Administration, 2017; U.S. Census Bureau, 2017.



Years 2019 to 2049: Integrating autonomy
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Cloud	
Integrating autonomy

How can we gain understanding for integrating 
autonomy into complex systems?
In particular: traffic congestion.



Long-standing control challenges

System complexity
•  Highly complex non-linear 

delayed dynamics
•  Human behavior modeling 
•  Large-scale, heterogeneity
•  Computational cost

Data restrictions
•  Expensive to collect data
•  No data on the future
•  Expensive to test / deploy
•  Limited benchmarks

CAVs TimeUrban system



Wadud, et al. TR-A, 2016. TR-A; U.S. Energy Information Administration, 2017.

Deep reinforcement learning
[ICLR18, T-RO18, CoRL18,  
ICRA18, ITSC17, ITSC17]

Convex optimization
[ISTTT15, TR-C15, CDC15, T-ITS18]

Combinatorial optimization
[ITSC16, ITSC16, T-ASE18]

Integrating autonomy as control
Approach for deriving insights:
•  Trade precision for complexity
•  Leverage compute and system decomposition
•  Leverage simulation to overcome data 

restrictions



Urban networks 

Setting: ~2000 vehicles

Dynamics: 

•  cascaded nonlinear 
systems 

•  bottlenecks

•  multi-lane merges

•  toll plaza dynamics

 

 

Wu, et al. IEEE ITSC, 2017; Wu, et al. IEEE T-RO, in review.

San	Francisco	Downtown	

San	Francisco	Bay	Bridge	



On/off-rampSingle-lane

Grid networkBottleneck

Intersection

Straight highway
Signalized  
intersection

Multi-lane

Traffic LEGO blocks 
Benchmarks for autonomy in transportation

Wu, et al. IEEE ITSC, 2017;  Wu, et al. IEEE T-RO, in review; Vinitsky, Kreidieh, …, Wu, et al. CoRL, 2018.



Traffic jams
1955

Partial differential 
equations (PDE)

Setting: 22 human drivers

Instructions: drive at 19 mph.

No traffic lights, stop signs,  
lane changes.

900 papers on PDEs for traffic

Sugiyama, et al.

2008 2019



Video credits: NewScientist.com

Traffic jams
1955

Partial differential 
equations (PDE)

Setting: 22 human drivers

Instructions: drive at 19 mph.

No traffic lights, stop signs,  
lane changes.

Traffic jams still form.

 

900 papers on PDEs for traffic

Sugiyama, et al.

2008 2019



Decisions in urban systems:
Vehicle accelerations

Tactical maneuvers

Transit schedules

Traffic lights

Land use

Parking

Tolling

…

Deep reinforcement learning (RL)
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Setting: 1 AV, 21 human

Experiment
•  Goal: maximize average velocity
•  Observation: relative vel and headway

•  Action: acceleration
•  Policy: multi-layer perceptron (MLP)
•  Learning algorithm: policy gradient

Results
•  1 AV: +49% average velocity
•  First near-optimal controller for single-lane
•  Uniform flow at near-optimal velocity
•  Generalizes to out-of-distribution densities

Wu, et al. CoRL, 2017; Wu, et al. IEEE T-RO, 2018

AV offAV on

Single-lane control with RL
1955

Wu, et al.

20192008

2017
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Sugiyama, et al.

Stern, et al.
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Average velocity vs traffic density

Human driver model

Intelligent Driver 
Model (IDM) 
[Treiber, et al. 2000]

Single-lane: dynamical system equilibria

Wu, et al. CoRL, 2017;  
Wu, et al. IEEE T-RO, in review; Treiber, et al. Physical Review E, 2000.

Traffic jams
(stable)

Optimal
(unstable)



260m

Single-lane: state of the art policy

State of the art
Proportional-integral 
(PI) controller  
with saturation  
[Stern, et al. 2018]

 

Wu, et al. CoRL, 2017; 
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018

A
ve

ra
ge

 v
el

o
ci

ty
 (m

/s
)

Vehicle density (veh/m)

Average velocity vs traffic density

Optimal
(unstable)

Traffic jams
(stable)

State of the art



Single-lane: learned policy via deep RL

State of the art
Proportional-integral 
(PI) controller  
with saturation  
[Stern, et al. 2017]

Our results
•  Near-optimal
•  Generalizes to 

out-of-distribution 
traffic densities
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This work

TrainTest Test

Wu, et al. CoRL, 2017; 
Wu, et al. IEEE T-RO, in review; Stern, et al. TR-C, 2018



Multi-lane Reduction: A Stochastic 
Single-lane Model for Lane Changing.
Wu, et al. ITSC, 2017.

Lane-changing in traffic streams.
Laval, Daganzo. TR-B, 2006.

General lane-changing model MOBIL for 
car-following models.
Kesting, et al. TRR, 2007.

Multi-lane traffic
Dynamics: mixed discrete-continuous 
cascaded nonlinear systems

Techniques:

•  Partial differential equations                             

•  Hybrid systems

•  Formal methods

•  Model predictive control

Wu,	et	al.	IEEE	T-RO,	2018	



Setup: 1 AV, 41 human

Experiment

•  Goal: maximize average velocity

•  Observation:  
following headways, velocity

•  Action: acceleration and lane change

Results

•  First stabilizing controller for multi-
lane traffic

•  Insight: A single AV can stabilize 
multiple lanes of traffic

•  Emergent traffic break
Wu,	et	al.	IEEE	T-RO,	2018	

Multi-lane: mixed autonomy

Automated

Observed

Unobserved



Multi-lane: traffic break
Setup: 1 AV, 41 human

Experiment

•  Goal: maximize average velocity

•  Observation:  
following headways, velocity

•  Action: acceleration and lane change

Results

•  First stabilizing controller for multi-
lane traffic

•  Insight: A single AV can stabilize 
multiple lanes of traffic

•  Emergent traffic break
Wu,	et	al.	IEEE	T-RO,	2018	

A traffic break found in the wild
(California Interstate Highway 8)



On/off-rampSingle-lane

Grid networkBottleneck

Intersection

Straight highway
Signalized  
intersection

Multi-lane

Traffic LEGO blocks 
Benchmarks for autonomy in transportation

Wu, et al. IEEE ITSC, 2017;  Wu, et al. IEEE T-RO, in review; Vinitsky, Kreidieh, …, Wu, et al. CoRL, 2018.



San Francisco Bay Bridge

Multi-lane merge

Toll plaza: 18 lanes

Wu, et al. IEEE T-RO, in review.



Setting: No AVs 720 veh/hr

Core problem: traffic bottleneck

Phenomenon: capacity drop

Setting: 10% AVs 1020 veh/hr

Vinitsky, Parvate, Kreidieh, Wu, Bayen. IEEE ITSC, 2018

Eugene Vinitsky

Dynamics: 
•  Four lanes à Two lanes à One
•  Cascaded nonlinear systems with right-of-way dynamics model, merge conflicts, 

and excessive, fluctuating inflow

40% improvement
Avoids capacity drop



Integrating autonomy: current & future

Urban decision 
support systems

Understanding 
adversarial driving

Scalable RL for 
networked systems

Operationalizing 
insights for control

Scalable  
behavior modeling

Coping with 
distribution shift



Policy transfer
•  Policies trained on ring roads, 

then deployed on straight roads
A. Kreidieh	

Kreidieh, Wu, Bayen, ITSC 2018.

Setting: No AVs

Initial	performance	
boost	

•  Successful direct transfer!
•  Closed à open networks



Uncertainty quantification and mitigation
High-dimensional control: variance reduction for policy gradient via  
                                                                                                               action-dependent baselines
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Door	Opening	(24-dim)	

Aravind Rajeswaren

Wu, Rajeswaren, et al. ICLR, 2018; Rajeswaran, et al. arXiv, 2017.

Previous SOTA: 
Greensmith, et al., 2004



Integrating autonomy into urban systems

Findings: 
• Automatically discovered 

traffic controllers

• Small % of AVs greatly affect 
traffic dynamics, which in turn, 
affects all parts of the urban 
system.

+142%+30%+49%

+40%

+60%

Traffic LEGOs 

5-10% AVs

Cathy Wu 
cathywu@mit.edu

Flow: open source 
project to enable RL 
for traffic control  
flow-project.github.io

Environment

Traffic simulator
SUMO/Aimsun

Agent

Custom 
dynamics

Task designer

Flow

state st action atreward rt

RL Library
Ray RLlib /rllab

Challenge: 
Vast uncertainty in future urban 
systems due to autonomy.

Approach:  
Deep reinforcement learning 
(RL) provides understanding 
for integration of autonomy.

?
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