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Autonomous and Connected Vehicles

what form, at what rate, and through
what kind of evolution path.

CAV systems are likely to be major game
changers in traffic, mobility, and logistics.

No longer a question of if, but of when, in %

Data. Changes. Everything.




SEVEN Factors Affecting Future Urban Mobility

«  Personal-- mobile computing and communication technologies
capable of engaging fravelers and exchanging information anywhere

and anytime, best manifested through the ubiquitous smartphone;
- Connected-- promising a future surface transport fleet that is
seamlessly connected with each other and with the infrastructure;

- Automated—to varying degrees in different operational environments,
towards eventual full automation (NHTSA Levels 4 and 5);

« Shared—continuation of trend towards emerging mobility services
such as ridesharing, ride-hailing (e.g. Uber) and on-demand delivery,
which, powered by automation and connectivity, is poised to
fransform personal and freight mobility;

« Electric—greater adoption of electric and plug-in hybrid vehicles in
both pTerson and freight movement can significantly reduce carbon
impac

« Social-- social media that provides new opportunities to track,
understand and influence human behavior towards more efficient
transportation use.

* Non-motorized-- or motor-assisted forms of individual mobility, from
— walking to bicycling and mini electric scooters, there has been a - ,
4 resurgence in non-automotive mobility. 5. Everything,
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Intelligent Transportatlon Systems

Convergence of location, telecommunication
and automotive technologies for better
transportatlon system safety, efficiency, and ;
user convenience.




Drinking From A Fire Hose: Real-
time Data And Transportation
Decision-making

Hani S. Mahmassani
The University of Texas at Austin

UCTC Student Conference, Irvine, CA
February 2001



CONVENTIONAL WORLD

Steady - state
Equilibrium
Static

Data poor

Uncertainty about past/ current
events

Component level

Long lead time between
solution and implementation

Limited “accountability” of
decisions

“A priori” solutions

ITS ENVIRONMENT

Time varying

Evolutionary paths

Dynamic

Data rich

Known past/current events (to
varying degrees)

System level

Immediate action

Performance monitoring and
feedback

Real-time adaptive strategies



25 YEARS--
DEPLOYMENT OF A LOT OF
TECHNOLOGY

NOT AS MUCH INTELLIGENCE



But navigation services are freely available
to users on any smartphone—
in most cities of the world

Most with real-time travel time
information at least on major arterials

Some even with prediction

Though in nearly all cases limited to
individual, uncoordinated (“selfish”) routing

I-» Turn right
toward W CA‘85N

Calderon Ave

12 min
X 51mi « 12:42 PM

w Runaway
4 Passenger I q

& Browse v




Multimodal mobility
at the push of a button

Select Your Trip

200 Vesey St -
JFK Intl Airport

w Departat  Arrive by

Best Match $399.04
Leave in 20m $10052x2

Soon to include urban
air mobility services

Artivo at JFK terminal

Leave Later $387.08

Leave in 45m $19354x2

8:45am

0 Ub?TX

Pick
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INTELLIGENT VEHICLE-HIGHWAY SYSTEMS

ITS 0.9 Vghicles |
Highway infrastructure

INTELLIGENT TRANSPORTATION SYSTEMS

ITS 1.0 Buses, trains, multimodal services
Urban mobility

Digital 6th A CONNECTED SYSTEMS
irace FOCUS: THE USER

| A . .
==~_ Mobility as an APP in
seamless connected

environment



TWO MAIN AREAS FOR DEVELOPING
TRANSPORTATION SYSTEM INTELLIGENCE

Realization |
Monitor the state of the system at all times,
provides basis to intervene and apply control actions in

real-time. L _
State estimation and prediction,

Online optimization

Realization I
Eliminate or reduce individual human error, and the
system will operate more efficiently.
Autonomous and Connected Vehicles



STRATEGIC ‘ MODELS

DATA
DECISION ALGORITHIMS WAREHOUSE
MAKING f
POLICY & PHYSICAL ANALYTICS KNOWLEDGE
DESIGN
MANAGERS/
OPERATORS SYSTEM
INTELLIGEMCE
LOMG TERM

PLAMS, DESIGMNS DIAGMOSTICS

and POLICIES
PREDICTIVE

PMANAGEMENT

MEDIUM TERM

OPERATIONAL STATUS LAWNER
INTERVENTIONS -

PHYSICAL CONDITION LAYER

DECISIOMNSS
BEHAVIOR

REAL-TIME/

SHORT TERM INFRASTRUCTURES

INTERVEMTIONS

| INTERMODAL TRANSPORTATION NETWORKS
CONTROLS
COMMUNICATION/SENSING NETWORKS
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VEHICLE TO INFRASTRUCTURE
COMMUNICATION

CONNECTED VEHICLE SYSTEMS @ orme e




VEHICLE TO VEHICLE COMMUNICATION VEHICLE TO INFRASTRUCTURE

COMMUNICATION
V2X~- VEHICLE TO PEDESTRIAN/BICYCLE/E- 5 /BIKE T0 INERASTRUCTURE
SCOOTER COMMUNICATION / UCTU

COMMUNICATION

i T —
- 3 =" N SR o =T 14
' - ' E
< T
- . 2
R - B
-

% = = -.'.:;‘— :-_ —— b _’__ ‘_. ~ - \

CONNECTED MOBILITY SYSTEMS




The connected vehicle is already a mainstream reality

&)
O I

vehicles sales by 2021 0

S

Source: QUALCOAMA“’



Vision for always-connected vehicle

@ & &9

- Always connected

Highly intelligent Increasingly

4 autonomous
U \\
v : ’

Increasingly

Highly secure w electric (or hybrid)

Safer—towards zero Greener—reduce air More predictable and
road accidents pollution & emissions productive travel

Source: QUALCOAMA“’




Vision for always-connected vehicle
Requires new levels of connectivity and intelligence

Heterogeneous On-device
connectivity intelligence

Vehicle-to-Everything  Bluetooth

communications _—
Wi-Fi / Hotspot

Connected

e ot Cellular 3G/4G/5G

Wireless EV Always-on

charging telematics

CAN / Ethernet /
Powerline

Real-time
navigation

Source: QUALCOMM"



Overcoming the challenges of V2X communications

V2X Challenges C-V2X Solutions

& 250km/h

' High relative speeds Enhanced signal design
‘ a Le.ads to significant Doppler Eg increasing # gf rgf signal symbols tc:-. .
250km/h shift / frequency offset improve synchronization and channel estimation

High node densities Enhanced transmission structure

é a a Random resource allocation Transmit control and data on the same
results in excessive resource sub-frame to reduce in-band emissions

collisions - .
More efficient resource allocation

& 6 & New methods using sensing and semi-

persistent resource selection

B _ Time synchronization Allow utilization of GPS timing
T --4 a Lack of synchronization source Enhancements to use satellite (e.g. GNSS)
when out-of-coverage when out-of-coverage

Source: QUALCOIWW



C-V2X increases reaction time over 802.11p/DSRC
For improved safety use cases - especially at high-speeds, e.g. highway

Braking distance

Reaction time ~9.2sec ~2.5sec
140kmv/h
e C-V2X range >450m e
. . . 140km/h Okm/h
LTE ™8dB higher link budget due to single =
carrier waveform, coding gain, longer & 802.11p Enge 225m ~
transmission time and higher Tx power :
Reaction time ~3.3s<;::; ..............
Safer driving Support for Increased situational
experience high speeds awareness
Increased driver reaction time Relative speeds up to 500km/h Gather data from further ahead

Source: QUALCONVW



5G will build upon and enhance C-V2X

New 5G platform will augment /complement C-V2X—no ‘rip and replace’

Multi-mode vehicle with
simultaneous connectivity
across 4G LTE, C-V2X and 5G

4G LTE

C-V2X

5G

Continue to evolve and
provide ubiquitous coverage
as 5G is rolled out

C-V2X direct and network
communications

Bring new capabilities for
C-V2X network communications
and augment C-V2X direct
communications over time

Source: QUALCO/WW



Simple Taxonomy of ITS Applications

SENSING SENSING

FACILITIES PARTICLES J

Augments facility- //
INTERVENTION based sensors; ////////
FACILITIES improves demand : J/_////_/—
estimation and ‘/_////—/—
predictive strategies —/——_/_%
—
ITS: Traveler information Next Gen: [ —‘_N\\\—\
INTERVENTION systems (ATIS) Personalized, social, X\\\\\
PARTICLES Emerging: Multimodal, gamified to maximize —X\

user-customized response and impact

22 Data. Changes. Everything.




Connectivity

Connected systems
(internet of everything)

Ad-hoc
networks

Peer-to-Peer
(Neighbor)

Receive
only

Isolated

‘ooperative
Driving
‘oordinated

- Optimized flow

‘ - Routing
onnected Speed harmonization

- Real-timeinfo Autonomous
- Asset tracking Vehicles
- Electronic tolling

>

Fully manual Fully automat
Level o Level 5

Automation




Gap Analysis Structure

(NUTC, 2018 for FHWA study)
FOUR KEY MODELING COMPONENTS

Demand Effects:

Household and Firms
Activity and Trawvel
Choices

Operational
Performance:

Flow Modeling and
Control 5trategies

Supply Changes:

Mobility as a Service
Shared Fleet Operations

Network
Integration:

Traveler Assignment
Multi-Agent Behavior
Interactions
Equilibration

24



Mobility Service Delivery Models

Fully-autonomous vehicles (AVs) expected to accelerate
existing frends toward shared urban mobility

AVs eliminate cost and performance limitations
associated with human drivers

Allow mobility services to compete with personal vehicles
in terms of cost and quality of service (i.e. short wait times)

Mobility as a service (MaaS$)-- Everyone has access to
portfolio of services for different purposes— multiple public
transit modes, shared bikes, shared fleet of private
vehicles, rides on demand...

Expect to see a wide-variety of AV fleet business models

. Everything.




AV Fleet Business Models for Mobillity Service

Hyland and Mahmassani (TRR, 2017)

AV Fleet Business

Model Decisions

Reservation

Time-frame

Strategic Decisions

Shared Reservation Vehicles Fleet Size
Rides Type Elasticity

Vehicle

Fuel-Type

" Variable (e.g. 1 Advanced Variable/ 1 . ]
| Marginal Cost) FEEEEE Sharing Point-to-Point Heterogeneous Elastic Electric
Fixed 1 L=l 1 No Sharing 1 Hourly 1 Homogeneous 1 Fixed 1 Conventilonal
Requests Gasoline

Vehicle Repositioning

Tactical Decisions

Request Hold before
Assignment

Diverting En-route
Vehicles




OUR APPROACH

a 'GEI"'uIl'.:"l|Ir
No Automation ] /
Mot Connected

Self-Driving
Not Connected

CONMECTED CONMECTED
MO Automation AUTOMATED

Comm. Protocols
H |—|.____ |
ccel. Choice “Rules of engagement” ccel. Choice
Lane changing

INTEGRATED TRAFFIC-TELECOM
SIMULATION PLATFORM

Accel. Choice Accel. Choice
Lane changing L_1ru._ changing




Predictive Control Application in a CAV
Environment : Shockwave Detection and
Speed Harmonization

Based on Amr ElFar’s PhD Dissertation (2019)



What is a Traffic Shockwave?

Traffic shockwaves reflect a transition from the free-flow traffic state to the
congested state

— can create potentially unsafe situations to drivers

— increase travel time

— significantly reduce highway throughput
Traditional detection approach is to track changes in speed and density over space
and time

— Density is difficult to measure on freeways (occupancy as a proxy)

— Locating the start of the shockwave is inaccurate (depends on the number and location of
installed road sensor)

Connectivity offers new opportunities for better detection of shockwaves.

— Detailed vehicle trajectories offer deeper insights into traffic interactions that leads to
shockwave formation

Northwestern 29




Traffic Shockwave lllustration

Northwestern 30



Transport

. Updated speed limit
. CAV IDs to be

Facility

. Road geometry
. Demand Patterns
- CAV MPRs

v

updated
. Broadcasting Strategy
(V2v, v2I)

F 3

Control Strategy
Speed Harmonization

Decentralized

Centralized

Central traffic
management
V2l

Fleet-oriented
control
V2V

- Congestion start time

Traffic Monitoring

Tracking Traffic
Dynamics
Early Shockwave

Detection

Estimating Traffic
Properties
CAV Trajectories =
Mean Speed
Speed Standard
Deviation

. Traffic Properties

A J
.

;A

- Congestion location

Shockwave

Northwestern
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Traffic State Prediction

Machine Learning Prediction Model

Technique Type
Logistic Regression

Neural Networks =
Random Forests -

Offline Models
Online Models




Prediction Methodology

Objective: identify shockwave formation and propagation based on the speed
variation of individual vehicles available through connected vehicles

technology

1. Segment a road facility into smaller sections (e.g. 200 ft)

2. Estimate traffic properties from CAV generated data in those sections

3. Monitor the changes in traffic properties across sections (mean speed,
speed standard deviation)

4. ldentify formation and propagation of shockwaves

Northwestern 32




10%

20%

30%

70%

100%.

Speed Standard Deviation Waves with Partial Connectivity

Measure Names
M riean Spead SSD CV100 SSD CV30
M sso cvio M ssD cvzo W ssD cv70

SSD CV10

AN . / : At low market penetrations,

© SSD could not be estimated
W for some time steps because
- there were not any

/\\//—\\_/f\v/\uﬁ\\,/\f\ connected vehicles detected

For market penetrations that
MM\M . & are larger than 30%, SSD

could be estimated for all

Mean Speed (mph) = Mean Speed (mph)
SSD CV20

SSDCV30

Mean Speed (mph) - Mean Speed (mph)  Mean Speed (mph)
SSD CV70

/h‘\ = .
TN \,/f\v/\vf\\,/\u/\ - £ time steps.

Northwestern 33




Building the Predictive Models

« Temporally and spatially lagged models

— current values of the dependent variable is predicted using lagged (past values) of
explanatory variables — when current values of explanatory variables are used, it
predicts the future state

— spatially lagged because traffic disruption starts downstream of a target segment
— Actual vehicle trajectories to build models (NGSIM)

Ves = V(t—1)s T V=D (s+1) T SSA(t—1)(s+1)

Dependent Vanable

Traffic State Binary: the state of traffic whether congested or uncongested as identified using the
travel time index (TTI) with a threshold above 1.7 (LA Congestion).

Explanatory Variables

Lagged Mean Speed in Continuous: the average speed of individual vehicles in the current section, lagged 10,

Current Section 20, or 30 seconds

Lagged Mean Speed in Continuous: the average speed of individual vehicles in the next downstream section,

Downstream Section lagged 10, 20, or 30 seconds

Lagged Speed Standard  Continuous: the speed standard deviation of individual vehicles in the next
Dewiation in Downstream  downstream section, lagged 10, 20, or 30 seconds
Section

34
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Methodology

Types of Predictive Models
e Offline models

—  built using historical data and updated whenever new data is available or when necessary (e.g. major
infrastructure changes)

*  Online models

— built using historical data and updated (re-trained) regularly using real-time information on prevailing traffic
conditions

Machine Learning Specifications
*  Binary logistic regression
— cut-off probability above 50%
* Random Forest
— 500 trees
*  Neural Networks
— One hidden layer

Northwestern 35




Model Accuracy Measures

* Three accuracy measures

— Overall accuracy: the percentage of traffic states
correctly predicted

— Congested state prediction accuracy: the percentage
of the congested states correctly predicted

— Uncongested state prediction accuracy: the
percentage of the uncongested states correctly
predicted

Northwestern 36




Offline Models (Partial MPR)

Random Forest

10s — 1% 7% 5%
Fl{g:dom Forest 50% 92% 95% 82%
ggzdom Forest 30% 86% 92% 70%
ggsdom Forest 50% 88% 93% 73%
szgzdom Forest 100% 90% 94% 77%

* Higher accuracy at higher MPRs -> improved SSD estimates
* Similar patterns for other ML algorithms

Northwestern 37




Congestion Prediction Conclusion

* Two types of predictive models were developed
— Offline models; built using historical data only
— Online models; updated in real-time

* Overall prediction accuracy 86% - 94%

* The models can be used for partially connected
traffic streams

Northwestern 38




Control Strategy Application:
Predictive Speed Harmonization in a
Connected Environment with
Centralized Control



Predictive Speed Harmonization in a Connected
Environment with Centralized Control

Updated speed
Freeway limit

Segment « CAVIDs to be
updated

Demand Patterns Central Speed Selection and

. Road geometry SDEEd Control
CAV Trajectories Broadcasting

Section mean
speeds
Traffic Monitoring - Section speed
Central System - V2I standard deviations
- Shockwave
formations

Northwestern

Congestion start
time
Congestion location

Congestion Prediction

Central Model




System Differentiation

The system is different from traditional speed harmonization systems
in four key areas:

1.

2.

It solely relies on connected vehicles to collect traffic information
— no need for road sensors

Uses machine learning to predict traffic congestion (up to 93%
accuracy)

The system identifies the location of congestion anywhere on a
freeway segment - not constrained by infrastructure sensors

General formulation selects optimal speed limits and broadcasting
distance to maximize traffic speed

Northwestern 41




Design Parameters

* Prediction horizon: duration over which congestion is predicted to
happen

— affects prediction accuracy

* Broadcasting distance: the distance between the predicted
congestion location and the point at which CAVs receive updated
speed limits before reaching congestion

— affects the transition smoothness of traffic
e Set of potential speed limits for traffic upstream of congestion
— affects the effectiveness of the strategy

42
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Case Studies

 Multiple operational scenarios of a 2-lane
freeway segment (5 Km) with one on-ramp

* Volumes: 3000 vph main lanes, 500 vph on-
ramp

43
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Congestion Prediction

+ Utilize the same machine learning model introduced earlier

Ves = V(t-1)s T V(e=1)(s+1) T SSA(t=1)(s+1)

+ Training data was generated using simulated trajectories for 2-lane highway with one on-
ramp at various demand levels (1000 - 4000 vphl)

Prediction Overall Congested State Uncongested Data
Horizon Accuracy Prediction State Prediction Source
Accurac Accurac

Previous study - Eifar et al (10

10s 93% 96% 85% NGSIM
20s 91% 95% 79% NGSIM

Random Forest 10s 93% 95% 85% NGSIM
Random Forest 20s 90% 94% T7% NGSIM
Neural Network 10s 89% 97% 68% NGSIM

Neural Network 20s 90% 95% 78% NGSIM
This stuc
Random Forest 10s 99% 95% 99% Simulation

Random Forest 20s 98% 90% 99% Simulation
N Random Forest 30s 97% 87% 99% Simulation
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Activating SPDHRM reduces
the severity and length of
traffic shockwaves
(improves safety)

Note: Using conventional
Decision-tree approach for
setting speed limit values
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5000

4500

4000

3500

3000

2500

Base

2000

Flow (veh/hr-lane)

1500

1000

Activating SPDHRM improves

0] 20 40 60 80 100 120 140 160 180 200 220

Bersiy (wen/km-tane) traffic stability and
performance

4500 o8
L)
-

4000 .g

3500 i"v
3000 g.:. .. -
2500 g.,

2000

Flow (veh/hr-lane)

1500

1000 e

Active SPDHRM

500

o] 20 40 60 80 100 120 140 160 180 200 220
Density (veh/km-lane)
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100%

Average Section Speed: 73 KM/hr

80%
Section Speed StdDewv: 16 KM/hr

GJ % 60%
n £
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20%
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(o] 10 20 30 4Si:)pee(153(m!hf;:) 70 80 a0 .
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100% . .
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Base (0%)

Low Connectivity (40%)

High Connectivity (80%)

Flow (veh/hr-lane)

Flow {vehihr-lane)

Flow (veh/hr-lane)

Connectivity improves the performance of SPDHRM

5000

4500

4000

3500

3000

2500

2000

1500
1000

5000
4500
4000
3500
3000
2500
2000
1500

1000

5000

4500

4000

3500

3000

2500

2000

1500

1000

(a).

20 40 60 80 100 120 140 160 180 200 220
Density (veh/km-lane)

(b)

20 a0 60 80 100 120 140 160 180 200 220
Density (veh/km-lane)

(c)

20 ao 60 80 100 120 140 160 180 200 220
Density (veh/km-lane)
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Relative Frequency

Relative Frequency

Relative Frequency

100%

60%

40%

20%

100%

60%

40%

20%

100%

80% |

B
=]
B

20% {

(d)

Average Travel Time: 241 sec

Higher CV market

penetration:

1.

160 180 200

220 240 260 280 300 320 340
Vehicle Travel Time (sec)

(e)

160 180 200

Average Travel Time: 235 sec

220 240 260 280 300 320 340
Vehicle Travel Time (sec)

(f)

Average Travel Time: 229 sec

220 240 260 280 300 320 340
Vehicle Travel Time (sec)

Improves congestion
prediction

Improves speed
compliance rate




SPDHRM improves traffic performance in low automation conditions
@ (d)

e - * Automated vehicles
S e . . . .
= e g o stabilize traffic without
O 3 E 40% 1
T SPDHRM due to the
o 1000 0% |

a0 80 100 120 140 160 180 200 220 . 4 . rObOtIC natu re Of Its

g (b) (@) driving behavior
f§i % i :EEE }‘ so% | Average Travel Time: 206 sec
s % g 3000 g 60%
% g ;‘;: 2500 E’
E = ';' 2000 % o
st i ;" e SPDHRM further
I Z 1000 P 0% | ) .
g u: i 20 a0 60 80 100 120 140 160 180 =200 220 '—*_ I m p roves t ra ffl C
- 7T T ey (venvkm-lane) 100 180 200 220 icie Travel Time (sec) 20 =0
- ( (f) performance by
z 5000 100% .
£s w0 & controlling speed of
52 % - 3500 -_':' E‘ H
s ixm £ § e connected vehicles
g g ;’ 2000 . LI % 40%
S E = 2
s
g OD 160 180 200 220
-

%‘L,sié"("veh}fﬁ ‘anl:,u 160 180 200 220 240 260 280 300 320 340
Vehicle Travel Time (sec)
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SPDHRM has virtually no impact on traffic in high automation conditions

Base (0% AV)

High Automation (70% AV)

High Automation (70% AV)

INACTIVE SPDJRM

ACTIVE SPDHRM

5000

4500

4000

3500

3000

2500

2000

Flow (veh/hr-lane)

1500
1000

5000

4500

4000

3500

3000

2500
2000

Flow (veh/hr-lane)

1500

1000

5000

4500

4000

3500

3000

2500

2000

Flow (veh/hr-lane)

1500

1000

(a)

40 60 80 100 120 140 160 180 200 220

Density (veh/km-lane)

(b)

ao 60 80 100 120 140 160 180 200 220

Density (veh/km-lane)

(c)

a0 60 80 100 120 140 160 180 200 220

Density (veh/km-lane)
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Relative Frequency

Relative Frequency

Relative Frequency

100%

40%

100%

60%

40%

20%

100%

60%

40%

20%

(d)

Average Travel Time: 241 sec

160 180 200 220 240 260 280 300 320 340

Vehicle Travel Time (sec)

(e)

Average Travel Time: 183 sec

160 180 200 220 240 260 280 300 320 340
Vehicle Travel Time (sec)

(f)

Average Travel Time: 183 sec

160 180 200 220 240 260 280 300 320 340
Vehicle Travel Time (sec)

SPDHRM is not activated
as the high market
penetration of AVs
prevents congestion




The system’s design parameters need to be fine-tuned for
optimal results

500 233 75 16

1000 229 80 9

1500 237 76 13

2000 235 77 13

Prediction Horizon (sec) Average Travel Time (sec) Average Speed (km/h) StdDev Speed (km/h)
10 236 75 14

20 229 80 9

30 230 76 15

Two ways to choose parameters:
* Scenario-analysis (field or simulations)
* Optimization

Northwestern o1




Optimization-based Formulation for Predictive SPDHRM at the
Individual Vehicle Level

to+ton
max Z Z DTy, (ul®™)
t=t. veV

Umin < ugls < Umaxs Vv eV

ul®> = 5% uy, Vv eV®

u, integer, Vv e VW
t: time step
te: current time step
ton: optimization horizon
v vehicle id
V: set of all vehicle ids in targeted segment
| set of vehicles ids upstream of congestion location
DTy, distance traveled by vehicle (v) at time step (t) as a function of speed limits (simulation)
ums: decision variable - updated speed for vehicle (v) as a multiple of 5
Uy decision variable - updated speed for vehicle (v)
Upnin- min speed limit on highway
U max speed limit on highway

Northwestern 52




General formulation is computationally infeasible at the
individual vehicle level

* Microsimulation is the only way to predict distance travelled by vehicles while
capturing the interactions of different driving behaviors and control strategies

* Major limitation of this formulation
* Microsimulation is computationally intensive and time consuming
* Microsimulation-based optimization needs to run the simulation a large
number of times to find optimal solution

e Solution: reformulate to reduce number of decision variables
* Finite reduced sets of speeds and distances

ueu= {umin: (umin + 5); ---:umax}
d € D = {500,1000, 1500}

Northwestern 53




Performance Comparison

Optimization-based vs. Decision-Tree Speed Control
Le+lpp
max Z Z DT, (u, d) @
veV
uel = {55, 60,65, ...,100 } > 75 ki <75 sk
km/h
d € D = {500,1000, 1500} m Gomnd  Coend  Cond

Northwestern ”
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Optimization-based speed
control further reduces the
severity and length of
traffic shockwaves

Optimal limit selection from a wider
set of speeds and optimal
broadcasting distance leads to
smooth transition of upstream flow
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Decision-tree

Optimization-based
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Optimization-based speed
control further improves the
overall traffic speed

The optimization formulation
maximizes speed




Increasing optimization horizon beyond 30 seconds (3x
monitoring time-step) does not significantly improve

performance

10 232 75 16
20 225 85 7
30 221 85 7
40 222 86 6
50 220 81 9

* Increasing prediction horizon significantly slows down simulation

58

Northwestern




What to keep in mind for a real-world application of
optimization-based control?

* Additional layer of prediction when estimating distance traveled — more
prone to prediction errors
e advancements in traffic microsimulation models and reinforced
learning techniques minimize errors

* Computationally intensive and time consuming due to running a large
number of simulations
e Parallelization
* Optimize traffic simulator for speed
 Reduce number of potential decision variables to test (fastest)
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Centralized SPDHRM Conclusion

e Activating the SPDHRM system improves traffic
stability, speed, and reduces travel time

 The system performance improves at higher
market penetrations of CAVs

* The optimization-based control strategy further
improves the performance of the system

Northwestern 60




Control Strategy Application:
Predictive Speed Harmonization in a
Connected Environment with
Decentralized Control



Predictive Speed Harmonization in a Connected
Environment with Decentralized Control

Freeway
Segment

- CAV Fleet
Trajectories

Traffic Monitoring
Individual Vehicles - V2V
Fleet Size and Communication Range

Northwestern

- Updated speed limit
- Activation location

Speed Control
Individual Vehicle Speed Selection

. Downstream traffic
mean speeds
. Downstream traffic

speed standard
deviations
. Shockwave formations

ahead

- Congestion start
time

- Congestion location
downstream of
vehicle

Congestion Prediction

Single or Multiple (Fleet-based)
Models
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Low Connectivity (40%) Base (0%)

High Connectivity (80%)

Connectivity improves the performance of decentralized SPDHRM
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Relative Frequency

Relative Frequency

Relative Frequency

(d)

0%
Average Travel Time: 241 sec
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Ave: | Time
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0%
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(f)

Average Travel Time: 228 sec

160 180 200 220 240 260 280 300 320 340
Vehicle Travel Time (sec)

Higher CV market
penetration:

1. Improves congestion
prediction

2. Improves speed

3. Improves effectiveness

Note: This case assumes one
single fleet (same prediction
model, all CV data shared)
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Decentralized SPDHRM improves performance under low automation
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Base (0% AV)

High Automation (70% AV)

High Automation (70% AV)

INACTIVE SPDJRM

ACTIVE SPDHRM

Virtually no impact on traffic in high automation conditions
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 SPDHRM is not activated
as the high market
penetration of AVs
prevents congestion

This case assumes one
single fleet




Decentralized SPDHRM Conclusion

e Activating the decentralized system reduces the severity of traffic
shockwaves, improves stability of traffic, increases overall traffic
speed, and reduces travel time

* Having multiple prediction models (fleet-based models) reduces the
effectiveness of the strategy

e Successful application of the decentralized system requires
standardization of data collection among vehicles and the ability to
communicate with vehicles from other fleets to improve prediction
range and accuracy
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KEY TAKEAWAYS: HOW IS IT DIFFERENT THIS TIME?

Transportation and mobility industries undergoing major disruptive influences: technology,
players, concepts.

Forces transforming mobility systems — no longer dependent on public infrastructure
investment. Connectivity through C-V2X (Advanced LTE, 5G) rather than DSRC.

Emergence and growing role for shared mobility fleets (autonomous Uber-like services and
variants), though private ownership not likely to go away.

Change driven by direct user adoption of products and services, not agency sanctioning and
procurement.

Advances in Al, computational optimization, distributed control, etc.-- driven and deployed
by large technology companies.

Connectivity and automation— generate orders of magnitude more data and data
opportunities; from micro to system level, in very large quantities. Prediction and learning
enable effective operation and control.

Automation: All about replacing human functions, including responses and behaviors, by
sensors, machine learning, Al and optimal control. Fundamental knowledge and analytics
built around modeling human capabilities, limitations and choices remains essential.

Transportation agencies: Embrace change, rethink how to best accomplish mission.

ZISS,

Everything.




Selected Research Challenges

1.

2.
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The behavior question: what will people do?e Adoption of new
technologies and services, usage, safisfaction, happiness...

Algorithms for real-time shared autonomous fleet operations
under different business models, at scale.

Integrated dynamic network modeling frameworks for urban
and regional-level impact evaluation and system design: multi-
player games with cooperative/competitive agents.

System operation and management through personalized
information/incentives towards efficient and sustainable
mobility; role of prediction, behavioral science.

Flow management in mixed traffic environments; machine
learning, real-time control.

Data management in connected environment— from micro

scale interventions fo macro level assessment. Data. Changes. Everything.
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