RESEARCH THAT MOVES YOU

Northwestern University Transportation Center

Visit transportation.northwestern.edu to learn more.

Data. Changes. Everything.

Smart, Connected, Intelligent Mobility Networks: Why Is it Different This Time?

Hani S. Mahmassani

Northwestern University

NSF Workshop on Control of Networked Transportation Systems July 8-9, 2019; Philadelphia, PA, USA CAV systems are likely to be major game changers in traffic, mobility, and logistics.

No longer a question of if, but of when, in what form, at what rate, and through what kind of evolution path.

SEVEN Factors Affecting Future Urban Mobility

- Personal-- mobile computing and communication technologies capable of engaging travelers and exchanging information anywhere and anytime, best manifested through the ubiquitous smartphone;
- Connected-- promising a future surface transport fleet that is seamlessly connected with each other and with the infrastructure;
- **Automated**—to varying degrees in different operational environments, towards eventual full automation (NHTSA Levels 4 and 5);
- Shared—continuation of trend towards emerging mobility services such as ridesharing, ride-hailing (e.g. Uber) and on-demand delivery, which, powered by automation and connectivity, is poised to transform personal and freight mobility;
- Electric—greater adoption of electric and plug-in hybrid vehicles in both person and freight movement can significantly reduce carbon impact
- **Social**-- social media that provides new opportunities to track, understand and influence human behavior towards more efficient transportation use.
- **Non-motorized**-- or motor-assisted forms of individual mobility, from walking to bicycling and mini electric scooters, there has been a
- 4 resurgence in non-automotive mobility.

Intelligent Transportation Systems

1994

2

Convergence of location, telecommunication and automotive technologies for better transportation system safety, efficiency, and user convenience.

Drinking From A Fire Hose: Realtime Data And Transportation Decision-making

Hani S. Mahmassani The University of Texas at Austin

UCTC Student Conference, Irvine, CA February 2001

CONVENTIONAL WORLD

- Steady state
- Equilibrium
- Static
- Data poor
- Uncertainty about past/ current events
- Component level
- Long lead time between solution and implementation
- Limited "accountability" of decisions
- "A priori" solutions

ITS ENVIRONMENT

- Time varying
- Evolutionary paths
- Dynamic
- Data rich
- Known past/current events (to varying degrees)
- System level
- Immediate action
- Performance monitoring and feedback
- Real-time adaptive strategies

NOT AS MUCH INTELLIGENCE

25 YEARS--DEPLOYMENT OF A LOT OF TECHNOLOGY

But navigation services are freely available to users on any smartphone in most cities of the world

Most with real-time travel time information at least on major arterials

Some even with prediction

Though in nearly all cases limited to individual, uncoordinated ("selfish") routing

Multimodal mobility at the push of a button

Soon to include urban air mobility services

INTELLIGENT VEHICLE-HIGHWAY SYSTEMS

Vehicles Highway infrastructure

INTELLIGENT TRANSPORTATION SYSTEMS

ITS 1.0

Buses, trains, multimodal services Urban mobility

Digital 6th Sense ITS 2.0 =

ITS 2.0 = CS 2.0

CONNECTED SYSTEMS

FOCUS: THE USER Mobility as an APP in seamless connected environment

TWO MAIN AREAS FOR DEVELOPING TRANSPORTATION SYSTEM INTELLIGENCE

Realization I

Monitor the state of the system at all times, provides basis to intervene and apply control actions in real-time.

State estimation and prediction, Online optimization

Realization II

Eliminate or reduce individual human error, and the system will operate more efficiently.

Autonomous and Connected Vehicles

VEHICLE TO VEHICLE COMMUNICATION

VEHICLE TO INFRASTRUCTURE COMMUNICATION

CONNECTED VEHICLE SYSTEMS

VEHICLE TO VEHICLE COMMUNICATION

V2X- VEHICLE TO PEDESTRIAN/BICYCLE/E-SCOOTER COMMUNICATION

VEHICLE TO INFRASTRUCTURE COMMUNICATION

PED/BIKE TO INFRASTRUCTURE COMMUNICATION

CONNECTED MOBILITY SYSTEMS

The connected vehicle is already a mainstream reality

60%

Cellular penetration in new light vehicles sales by 2021¹

Vision for always-connected vehicle

Safer-towards zero road accidents

Greener–reduce air pollution & emissions

More predictable and productive travel

Source:

077207200

Vision for always-connected vehicle Requires new levels of connectivity and intelligence

Heterogeneous connectivity

Vehicle-to-Everything communications

Connected infotainment

Wireless EV charging

Real-time navigation Bluetooth Wi-Fi / Hotspot Cellular 3G/4G/5G Always-on telematics CAN / Ethernet / Powerline

On-device intelligence

Intuitive instrumentation Computer vision Intuitive security Machine learning

Augmented reality

Immersive

multimedia

Always-on sensing

Source: **QUALCO**

09/23/2009

Overcoming the challenges of V2X communications

Source:

09/23/2009

C-V2X increases reaction time over 802.11p/DSRC For improved safety use cases - especially at high-speeds, e.g. highway

5G will build upon and enhance C-V2X New 5G platform will augment / complement C-V2X-no 'rip and replace'

Continue to evolve and provide ubiquitous coverage as 5G is rolled out

C-V2X direct and network communications

Bring new capabilities for C-V2X network communications and augment C-V2X direct communications over time

Simple Taxonomy of ITS Applications

	SENSING FACILITIES	SENSING PARTICLES	
INTERVENTION FACILITIES	Conventional ITS Transportation Management	Augments facility- based sensors; improves demand estimation and predictive strategies	
INTERVENTION PARTICLES	ITS: Traveler information systems (ATIS) Emerging: Multimodal, user-customized	Next Gen: Personalized, social, gamified to maximize response and impact	

Connectivity

Connected systems (internet of everything)

Gap Analysis Structure

(NUTC, 2018 for FHWA study)

FOUR KEY MODELING COMPONENTS

Mobility Service Delivery Models

- Fully-autonomous vehicles (AVs) expected to accelerate existing trends toward shared urban mobility
- AVs eliminate cost and performance limitations associated with human drivers
- Allow mobility services to compete with personal vehicles in terms of cost and quality of service (i.e. short wait times)
- Mobility as a service (MaaS)-- Everyone has access to portfolio of services for different purposes- multiple public transit modes, shared bikes, shared fleet of private vehicles, rides on demand...
- Expect to see a wide-variety of AV fleet business models

AV Fleet Business Models for Mobility Service

Potential Variants

AV Fleet Business Model Decisions Hyland and Mahmassani (TRR, 2017)

Strategic Decisions

OUR APPROACH

INTEGRATED TRAFFIC-TELECOM SIMULATION PLATFORM

Predictive Control Application in a CAV Environment : Shockwave Detection and Speed Harmonization

Based on Amr ElFar's PhD Dissertation (2019)

What is a Traffic Shockwave?

- Traffic shockwaves reflect a transition from the free-flow traffic state to the congested state
 - can create potentially unsafe situations to drivers
 - increase travel time
 - significantly reduce highway throughput
- Traditional detection approach is to track changes in speed and density over space and time
 - Density is difficult to measure on freeways (occupancy as a proxy)
 - Locating the start of the shockwave is inaccurate (depends on the number and location of installed road sensor)
- Connectivity offers new opportunities for better detection of shockwaves.
 - Detailed vehicle trajectories offer deeper insights into traffic interactions that leads to shockwave formation

Traffic Shockwave Illustration

Prediction Methodology

Objective: identify shockwave formation and propagation based on the speed variation of individual vehicles available through connected vehicles technology

- 1. Segment a road facility into smaller sections (e.g. 200 ft)
- 2. Estimate traffic properties from CAV generated data in those sections
- 3. Monitor the changes in traffic properties across sections (mean speed, speed standard deviation)
- 4. Identify formation and propagation of shockwaves

Speed Standard Deviation Waves with Partial Connectivity

At low market penetrations, SSD could not be estimated for some time steps because there were not any connected vehicles detected

For market penetrations that are larger than 30%, SSD could be estimated for all time steps.

Building the Predictive Models

- Temporally and spatially lagged models
 - current values of the dependent variable is predicted using lagged (past values) of explanatory variables – when current values of explanatory variables are used, it predicts the future state
 - spatially lagged because traffic disruption starts downstream of a target segment
 - Actual vehicle trajectories to build models (NGSIM)

$$y_{ts} = v_{(t-1)s} + v_{(t-1)(s+1)} + ssd_{(t-1)(s+1)}$$

Variable		Description
	Dependent Variable	
y _{ts}	Traffic State	Binary: the state of traffic whether congested or uncongested as identified using the travel time index (TTI) with a threshold above 1.7 (LA Congestion).
	Explanatory Variables	
$v_{(t-1)s}$	Lagged Mean Speed in Current Section	Continuous: the average speed of individual vehicles in the current section, lagged 10, 20, or 30 seconds
$v_{(t-1)(s+1)}$	Lagged Mean Speed in Downstream Section	Continuous: the average speed of individual vehicles in the next downstream section, lagged 10, 20, or 30 seconds
ssd _{(t-1)(s+1)}	Lagged Speed Standard Deviation in Downstream Section	Continuous: the speed standard deviation of individual vehicles in the next downstream section, lagged 10, 20, or 30 seconds

Methodology

Types of Predictive Models

- Offline models
 - built using historical data and updated whenever new data is available or when necessary (e.g. major infrastructure changes)
- Online models
 - built using historical data and updated (re-trained) regularly using real-time information on prevailing traffic conditions

Machine Learning Specifications

- Binary logistic regression
 - cut-off probability above 50%
- Random Forest
 - 500 trees
- Neural Networks
 - One hidden layer

Model Accuracy Measures

- Three accuracy measures
 - Overall accuracy: the percentage of traffic states correctly predicted
 - Congested state prediction accuracy: the percentage of the congested states correctly predicted
 - Uncongested state prediction accuracy: the percentage of the uncongested states correctly predicted

Offline Models (Partial MPR)

Model	CV	Overall Accuracy	Congested State Prediction Accuracy	Uncongested State Prediction Accuracy
Random Forest 10s	30%	91%	95%	80%
Random Forest 10s	50%	92%	95%	82%
Random Forest 10s	100%	93%	95%	85%
Random Forest 20s	30%	86%	92%	70%
Random Forest 20s	50%	88%	93%	73%
Random Forest 20s	100%	90%	94%	77%

- Higher accuracy at higher MPRs -> **improved SSD estimates**
- Similar patterns for other ML algorithms

Congestion Prediction Conclusion

- Two types of predictive models were developed
 - Offline models; built using historical data only
 - Online models; updated in real-time
- Overall prediction accuracy **86% 94%**
- The models can be used for partially connected traffic streams

Control Strategy Application: Predictive Speed Harmonization in a Connected Environment with **Centralized** Control

Predictive Speed Harmonization in a Connected Environment with Centralized Control

System Differentiation

The system is different from traditional speed harmonization systems in **four key areas**:

- It solely relies on connected vehicles to collect traffic information

 no need for road sensors
- 2. Uses machine learning to predict traffic congestion (up to 93% accuracy)
- 3. The system identifies the location of congestion anywhere on a freeway segment not constrained by infrastructure sensors
- 4. General formulation selects optimal speed limits and broadcasting distance to maximize traffic speed

Design Parameters

- **Prediction horizon**: duration over which congestion is predicted to happen
 - affects prediction accuracy
- **Broadcasting distance**: the distance between the predicted congestion location and the point at which CAVs receive updated speed limits before reaching congestion
 - affects the transition smoothness of traffic
- Set of potential speed limits for traffic upstream of congestion
 - affects the effectiveness of the strategy

Case Studies

- Multiple operational scenarios of a 2-lane freeway segment (5 Km) with one on-ramp
- Volumes: 3000 vph main lanes, 500 vph onramp

Congestion Prediction

Utilize the same machine learning model introduced earlier

$$y_{ts} = v_{(t-1)s} + v_{(t-1)(s+1)} + ssd_{(t-1)(s+1)}$$

 Training data was generated using simulated trajectories for 2-lane highway with one onramp at various demand levels (1000 - 4000 vphl)

Model	Prediction Horizon	Overall Accuracy	Congested State Prediction Accuracy	Uncongested State Prediction Accuracy	Data Source	
Previous study -	Previous study - Elfar et al (10)					
Logistic	10s	93%	96%	85%	NGSIM	
Logistic	20s	91%	95%	79%	NGSIM	
Random Forest	10s	93%	95%	85%	NGSIM	
Random Forest	20s	90%	94%	77%	NGSIM	
Neural Network	10s	89%	97%	68%	NGSIM	
Neural Network	20s	90%	95%	78%	NGSIM	
This study						
Random Forest	10s	99%	95%	99%	Simulation	
Random Forest	20s	98%	90%	99%	Simulation	
Random Forest	30s	97%	87%	99%	Simulation	

Activating SPDHRM reduces the severity and length of traffic shockwaves (improves safety)

Note: Using conventional Decision-tree approach for setting speed limit values

Activating SPDHRM improves traffic stability and performance

Northwestern

46

Activating SPDHRM increases overall speed and reduces its variation

Northwestern

47

Connectivity improves the performance of SPDHRM

Higher CV market penetration:

- 1. Improves congestion prediction
- 2. Improves speed compliance rate

SPDHRM improves traffic performance in low automation conditions

 Automated vehicles stabilize traffic without SPDHRM due to the robotic nature of its driving behavior

 SPDHRM further improves traffic performance by controlling speed of connected vehicles

SPDHRM has virtually no impact on traffic in high automation conditions

 SPDHRM is not activated as the high market penetration of AVs prevents congestion

The system's design parameters need to be fine-tuned for optimal results

Broadcasting Distance (m)	Average Travel Time (sec)	Average Speed (km/h)	StdDev Speed (km/h)
500	233	75	16
1000	229	80	9
1500	237	76	13
2000	235	77	13

Prediction Horizon (sec)	Average Travel Time (sec)	Average Speed (km/h)	StdDev Speed (km/h)
10	236	75	14
20	229	80	9
30	230	76	15

Two ways to choose parameters:

- Scenario-analysis (field or simulations)
- Optimization

Optimization-based Formulation for Predictive SPDHRM at the Individual Vehicle Level

$$\max \sum_{t=t_{\circ}}^{t_{\circ}+t_{oh}} \sum_{v \in V} DT_{tv}(u_{v}^{m5})$$
$$u_{min} \leq u_{v}^{m5} \leq u_{max}, \quad \forall v \in V^{us}$$
$$u_{v}^{m5} = 5 * u_{v}, \quad \forall v \in V^{us}$$
$$u_{v} \text{ integer}, \quad \forall v \in V^{us}$$

time step t: current time step t. optimization horizon toh: v: vehicle id V: set of all vehicle ids in targeted segment V^{us} : set of vehicles ids upstream of congestion location distance traveled by vehicle (v) at time step (t) as a function of speed limits (simulation) DT_{tv} : u_{n}^{m5} : decision variable - updated speed for vehicle (v) as a multiple of 5 decision variable - updated speed for vehicle (v) u_{p} : min speed limit on highway u_{min} : max speed limit on highway u_{max} :

General formulation is computationally infeasible at the individual vehicle level

- Microsimulation is the only way to predict distance travelled by vehicles while capturing the interactions of different driving behaviors and control strategies
- Major limitation of this formulation
 - Microsimulation is computationally intensive and time consuming
 - Microsimulation-based optimization needs to run the simulation a large number of times to find optimal solution
- Solution: reformulate to reduce number of decision variables
 - Finite reduced sets of speeds and distances

$$u \in U = \{u_{min}, (u_{min} + 5), \dots, u_{max}\}$$

$$d \in D = \{500, 1000, 1500\}$$

Performance Comparison

s. Decision-Tree Speed Control

Optimization-based speed control further reduces the severity and length of traffic shockwaves

Optimal limit selection from a wider set of speeds and optimal

broadcasting distance leads to smooth transition of upstream flow

Optimization-based speed control further improves the stability of traffic

Smooth transition in speed limits improves stability of traffic

Optimization-based speed control further improves the overall traffic speed

The optimization formulation maximizes speed

Northwestern

57

Increasing optimization horizon beyond 30 seconds (3x monitoring time-step) does not significantly improve performance

Optimization Horizon (seconds)	Average Travel Time (sec)	Average Speed (km/h)	StdDev Speed (km/h)
10	232	75	16
20	225	85	7
30	221	85	7
40	222	86	6
50	220	81	9

• Increasing prediction horizon significantly slows down simulation

What to keep in mind for a real-world application of optimization-based control?

- Additional layer of prediction when estimating distance traveled more prone to prediction errors
 - advancements in traffic microsimulation models and reinforced learning techniques minimize errors
- Computationally intensive and time consuming due to running a large number of simulations
 - Parallelization
 - Optimize traffic simulator for speed
 - Reduce number of potential decision variables to test (fastest)

Centralized SPDHRM Conclusion

- Activating the SPDHRM system improves traffic stability, speed, and reduces travel time
- The system performance improves at higher market penetrations of CAVs
- The optimization-based control strategy further improves the performance of the system

Control Strategy Application: Predictive Speed Harmonization in a Connected Environment with Decentralized Control

Predictive Speed Harmonization in a Connected Environment with Decentralized Control

Decentralized SPDHRM improves traffic stability and performance

Decentralized SPDHRM increases overall speed and reduces its variation

Northwestern

64

Connectivity improves the performance of decentralized SPDHRM

Higher CV market penetration:

- 1. Improves congestion prediction
- 2. Improves speed
- 3. Improves effectiveness

Note: This case assumes one single fleet (same prediction model, all CV data shared)

Decentralized SPDHRM improves performance under low automation

- Automated vehicles stabilizes traffic without SPDHRM due to the robotic nature of its driving behavior
- SPDHRM further improves traffic performance by controlling speed of connected vehicles

This case assumes one single fleet

Virtually no impact on traffic in high automation conditions

(d)

Average Travel Time: 241 sec

 SPDHRM is not activated as the high market penetration of AVs prevents congestion

This case assumes one single fleet

Decentralized SPDHRM Conclusion

- Activating the decentralized system reduces the severity of traffic shockwaves, improves stability of traffic, increases overall traffic speed, and reduces travel time
- Having multiple prediction models (fleet-based models) reduces the effectiveness of the strategy
- Successful application of the decentralized system requires standardization of data collection among vehicles and the ability to communicate with vehicles from other fleets to improve prediction range and accuracy

KEY TAKEAWAYS: HOW IS IT DIFFERENT THIS TIME?

- 1. Transportation and mobility industries undergoing *major disruptive influences*: technology, players, concepts.
- 2. Forces transforming mobility systems no longer dependent on public infrastructure investment. Connectivity through C-V2X (Advanced LTE, 5G) rather than DSRC.
- 3. Emergence and growing role for *shared mobility fleets* (autonomous Uber-like services and variants), though private ownership not likely to go away.
- 4. Change driven by *direct user adoption* of products and services, not agency sanctioning and procurement.
- 5. Advances in AI, computational optimization, distributed control, etc.-- driven and deployed by large technology companies.
- 6. Connectivity and automation—generate orders of magnitude more data and data opportunities; from micro to system level, in very large quantities. **Prediction and learning** enable effective operation and control.
- 7. Automation: All about replacing human functions, including responses and behaviors, by sensors, machine learning, AI and optimal control. *Fundamental knowledge and analytics built around modeling human capabilities, limitations and choices remains essential.*
- 8. Transportation agencies: *Embrace change, rethink how to best accomplish mission.*

Selected Research Challenges

- 1. The behavior question: what will people do? Adoption of new technologies and services, usage, satisfaction, happiness...
- 2. Algorithms for real-time shared autonomous fleet operations under different business models, at scale.
- 3. Integrated dynamic network modeling frameworks for urban and regional-level impact evaluation and system design: multiplayer games with cooperative/competitive agents.
- 4. System operation and management through personalized information/incentives towards efficient and sustainable mobility; role of prediction, behavioral science.
- 5. Flow management in mixed traffic environments; machine learning, real-time control.
- 6. Data management in connected environment– from micro scale interventions to macro level assessment. Data. Changes. Everything.

Thank You

We Love Feedback

Questions/Comments

Email: masmah@northwestern.edu

Connect with NUTC

Follow Me

Twitter @b_rational

Data. Changes. Everything.

RESEARCH THAT MOVES YOU

Northwestern University Transportation Center

Visit transportation.northwestern.edu to learn more.