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Operations Research Control Theory

Symbiosis between transportation and systems sciences

Tight integration essential for efficient use of data
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Transportation Queues

jobs
server

mobility on demand

jobs: pickup/delivery requests

server: vehicle fleet

signalized intersection

jobs: vehicles

server: intersection

freeway (w/ CAVs)

jobs: vehicles

server: freeway infrastructure

Service paradigms determined by automation and control
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Performance Evaluation

λ
server capacity? wait time?

Constant Service Rate

λ− c︸︷︷︸
service rate

= queue growth rate

capacity = c

Example: M/M/1

fi
g5

c ≡ c(queue length)
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wait time

λ

capacity

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity overestimate

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacityunderestimate

spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



State Dependent Transportation Queues

wait time

λ

capacity spatial queue

fi
g5

Θ(λ/m2)

vs

fi
g5

Θ(λ2/m3)

vacation queue

2O

1O

Lin
k 

1

Link 2

0 100 200 300 400
Time

0

2

4

6

8

10

Av
er

ag
e 

Q
ue

ue
 L

en
gt

h

Vacation Queue
Webster Model
Vacation Queue (Time Average)
Uninterrupted Model
Akcelik Model

processor sharing queue

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

vs

Outline of the Talk

Network Flow

�

State-dependent Queue

�

flow conservation + Ohm
(static)?y

(dynamic)
{flow,mass} conservation

!

state-dependent service

tra�c queue

Ketan Savla (CEE, USC) Societal Cyber-Physical Systems June 19 2018 1 / 1

Ketan Savla (USC) CNTS Workshop July 8 2019 5 / 11



Current Notions of Capacity

Traffic Capacity [Highway Capacity Manual]

“. . . maximum number of vehicles that can pass a given point . . .

(assuming) no influence from downstream traffic operation . . .”

“. . . rate at which . . . vehicles can traverse an intersection approach

. . . assuming that the green signal is available at all times . . .”

f ≤ c

c− f : local robustness

Current capacity notions are local
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Towards Network Capacity

network capacity : ({ci}, physical constraints, control)
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Dynamical Network Flow

λ λout(t)

fi
xi

Mass Conservation

ẋ = λ+RT (x)f(x, u)︸ ︷︷ ︸
inflow

− f(x, u)︸ ︷︷ ︸
outflow

xi : queue on link i

R(x) : routing matrix

equilibrium x∗: λout(t) = λ

existence, stability, and robustness of x∗
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Distributed Feedback Control

min
u

∫ T

0

J(x(t), u(t)) dt

subj. to ẋ = traffic flow dynamics

u ≡ ramp metering, variable
speed limit, routing

open-loop: u(t)

exact convex relaxation

distributed computation

feedback: u(x) [ThC02.3]

principled distributed control

global computation of u(.)

Ketan Savla (USC) CNTS Workshop July 8 2019 9 / 11



Distributed Feedback Control

min
u

∫ T

0

J(x(t), u(t)) dt
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From State to Output Feedback Control

Output Feedback PF Control (ON/OFF Model)

Output feedback PF
gi is solution to:

max
gØgmin

ÿ

i

g̃i[k] log gi

subj to
ÿ

i

gi = T

no need to estimation x(t)
convex problem
decentralized
gi[k + 1] = g̃i[k]q

jœE≠
v

g̃j [k]

g̃i[k] : part of gi[k] during which xi is positive
g̃i[k] is measured using presence information from stopline detectors

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

𝑔2[𝑘] 

𝜏1 𝜏2 𝜏3 

𝑔̃2[𝑘] =∑ 𝜏𝑖
3

𝑖=1
 

 

𝑔2[𝑘] 

𝜏1 𝜏2 𝜏3 

𝑔̃2[𝑘] =∑ 𝜏𝑖
4

𝑖=1
 

 

𝜏4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

𝑔2[𝑘] 

𝜏1 𝜏2 𝜏3 

𝑔̃2[𝑘] =∑ 𝜏𝑖
3

𝑖=1
 

 

𝑔2[𝑘] 

𝜏1 𝜏2 𝜏3 

𝑔̃2[𝑘] =∑ 𝜏𝑖
4

𝑖=1
 

 

𝜏4 

Pouyan Hosseini (USC, CEE) Analysis & Control of Tra�c Flow PhD Defense, July 2019 30 / 1

direct access to x not available

y: detector measurement

“estimator” approach:
y → x̂→ u(x̂)

output feedback: u(y)

optimal output feedback traffic signal control

pilot test: ∼ 20% improvement w.r.t. incumbent
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