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A network of roads with given
demand

Limited measurements
Traffic models
Estimation

Controls

= Boundary control

= Routing (indirect)

= Nodal control (traffic lights
scheduling)

o

THE CONTROL PROBLEM IN THE TRADITIONAL SETTING
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(b) The mathematical abstraction



THE CONTROL PROBLEM IN THE CONNECTED VEHICLE SETTING

A network of roads with given
demand

= Abundant measurements
® Traffic models
= Estimation
= Controls
= Boundary control
® Routing (direct) +

= Nodal control (traffic lights
scheduling)




CONSIDER INTERACTIONS BETWEEN TRAFFIC LIGHT CONTROL

AND ROUTING IN THREE TIME SCALES

= | ong term: static user equilibrium (UE)

®  Minimize network delay while maintaining static UE traffic
assignment (MPEC)

m e.g., Smith, 1979;1981;Yang and Yagar, 1995; Ghatee and
Hashemi, 2007

" |ntermediate term: dynamic user equilibrium (DUE)

Traffic
flows

Signal
Minimize network delay while maintaining DUE (Dynamic timing
MPEC)
= Short-term: adaptive routing and control without Travel
equilibrium

delays

e.g., Local minimization of cycle and phases with real-time
hyperpath rerouting



TWO CASE STUDIES

m CASE | (short term): adaptive routing + distributed traffic light control
(Chai et al 2017)

m CASE Il (medium term): dynamic user equilibrium + system optimal
traffic light control (Yu, Ma & Zhang 2017)



CASE | : adaptive routing +
distributed traffic light control



ADAPTIVE TRAFFIC SIGNAL CONTROL LOGIC

= | ow-density control
m A typical vehicle actuated control
= High-density control
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DYNAMIC TRAFFIC ROUTING LOGIC

Time-dependent stochastic routing
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TESTING WITH MICROSCOPIC TRAFFIC SIMULATION (VENTOS)

m A |10x3 grid network is used

® Three different traffic demand
levels considered

m | ight traffic, no congestion

= Moderate traffic, mildly
congested

m Heavy traffic, highly congested




NUMERICAL RESULTS: AVERAGE TRAVEL TIME
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EFFECTS OF MARKET PENETRATION OF DTR TRAVELERS

Ayerage travel time over the entire simulation horizon with 500 vehicles Avgrage travel time over the entire simulation horizon with 6000 vehicles
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CASE |1 : dynamic user equilibrium
+ system optimal traffic light control



OPTIMAL TRAFFIC SIGNAL CONTROL CONSIDERING

DYNAMIC USER EQUILIBRIUM ROUTE CHOICE

m UE route choice behavior: routes with minimum perceived travel time
are selected

® Signal control plans affects travel times
" Flow capacity changes due to signal timing

® Queue spillbacks due to high demand and low capacity

= Minimizing total travel costs

= A mathematical program with equilibrium constraints (MPEC)
m Use PATH solver in GAMS

®  Global optimum may not be found (due to nonlinearity and non-convexity)



MODELLING FRAMEWORK
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NUMERICAL RESULTS

Sioux Falls Network
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NUMERICAL RESULTS

System total travel time

Froed Signal Control
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SOME REMARKS

® Joint routing/control in different levels can improve overall network performance

and induced demand)

Joint routing and control presents many challenging control/optimization problems

Solution of non-convex large scale MPEC problems

Model realism vs complexity,

Parameter identification and simulation of large networked systems
Stability of adaptive routing/control

Testbeds for validation



SOME REMARKS

= With automatous vehicles, a variety of new control problems arises

® Platooning and trajectory control
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® Fully or partially scheduled systems
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= Mixed traffic flow control
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