TRAFFIC CONTROL AND ROUTING IN A CONNECTED VEHICLE ENVIRONMENT

MICHAEL ZHANG

CIVIL AND ENVIRONMENTAL ENGINEERING

UNIVERSITY OF CALIFORNIA DAVIS

Workshop on Control for Networked Transportation Systems (CNTS) American Control Conference July 8 - 9, 2019 | Philadelphia

THE CONTROL PROBLEM IN THE TRADITIONAL SETTING

- A network of roads with given demand
- Limited measurements
- Traffic models
- Estimation
- Controls
 - Boundary control
 - Routing (indirect)
 - Nodal control (traffic lights scheduling)

(b) The mathematical abstraction

THE CONTROL PROBLEM IN THE CONNECTED VEHICLE SETTING

A network of roads with given demand

- Abundant measurements
- Traffic models
- Estimation
- Controls
 - Boundary control
 - Routing (direct) +
 - Nodal control (traffic lights scheduling)

CONSIDER INTERACTIONS BETWEEN TRAFFIC LIGHT CONTROL AND ROUTING IN THREE TIME SCALES

- Long term: static user equilibrium (UE)
 - Minimize network delay while maintaining static UE traffic assignment (MPEC)
 - e.g., Smith, 1979;1981;Yang and Yagar, 1995; Ghatee and Hashemi, 2007
- Intermediate term: dynamic user equilibrium (DUE)
 Minimize network delay while maintaining DUE (Dynamic MPEC)
- Short-term: adaptive routing and control without equilibrium

e.g., Local minimization of cycle and phases with real-time hyperpath rerouting

TWO CASE STUDIES

- CASE I (short term): adaptive routing + distributed traffic light control (Chai et al 2017)
- CASE II (medium term): dynamic user equilibrium + system optimal traffic light control (Yu, Ma & Zhang 2017)

CASE I : adaptive routing + distributed traffic light control

ADAPTIVE TRAFFIC SIGNAL CONTROL LOGIC

- Low-density control
 - A typical vehicle actuated control
- High-density control

•
$$G_{ij}^{h;g}(t) = \frac{q_{ij}^{h;g}(t)}{\sum_{h,j\in\Gamma(i),h\neq j} q_{ij}^{h;g}(t)} G_i^g(t)$$

Phase selection control

•
$$\left(\varepsilon_{ij}^{l}, G_{ij}^{h;g}(t)\right) = \arg\max_{\left(\varepsilon_{ij}^{l} \in \varepsilon_{ij}, t_{g} \in [G_{min}, G_{max}]\right)} \left\{\frac{\text{passing in phase } \varepsilon_{ij}^{l} \text{ during time } t_{g}}{t_{g}}\right\}$$

DYNAMIC TRAFFIC ROUTING LOGIC

Time-dependent stochastic routing

$$\lambda_{i}^{h;s;g}(t) = \min_{j \in \Gamma(i)} \left\{ \sum_{k=1}^{K_{ij}^{g}(t)} \left[\tau_{ij}^{k;g}\left(t + \phi_{ij}^{\varepsilon_{ij}^{l};g}(t)\right) + \lambda_{j}^{i;s;g}\left(t + \phi_{ij}^{\varepsilon_{ij}^{l};g}(t) + \tau_{ij}^{k;g}\left(t + \phi_{ij}^{\varepsilon_{ij}^{l};g}(t)\right) \right) + \phi_{ij}^{\varepsilon_{ij}^{l};g}(t) \right] \bullet \rho_{ij}^{k;g}\left(t + \phi_{ij}^{\varepsilon_{ij}^{l};g}(t)\right) \right\}$$

- $\lambda_i^{h;s;g}(t)$: The minimum cost from node i to destination s at time t in day g, the previous node is h.
- $\phi_{ij}^{\varepsilon_{ij}^{l};g}(t)$: The delay from intersection i at time t in day g; ε_{ij}^{l} is the l^{th} phase of intersection i whose down steam node is j.
- $\tau_{ij}^{k;g}(t)$: the k^{th} possible link travel time for link (i, j) at time t in day g.
- $\rho_{ij}^{k;g}(t)$: the probability for link travel time $\tau_{ij}^{k;g}(t)$ in day g.
- $K_{ij}^g(t)$: The total number of possible link travel times for link (i, j) at time t in day g
- $\Gamma(i)$: The set of all the adjacent codes of node i.

TESTING WITH MICROSCOPIC TRAFFIC SIMULATION (VENTOS)

- A I0x3 grid network is used
- Three different traffic demand levels considered
 - Light traffic, no congestion
 - Moderate traffic, mildly congested
 - Heavy traffic, highly congested

NUMERICAL RESULTS: AVERAGE TRAVEL TIME

EFFECTS OF MARKET PENETRATION OF DTR TRAVELERS

CASE II : dynamic user equilibrium + system optimal traffic light control

OPTIMAL TRAFFIC SIGNAL CONTROL CONSIDERING DYNAMIC USER EQUILIBRIUM ROUTE CHOICE

- UE route choice behavior: routes with minimum perceived travel time are selected
- Signal control plans affects travel times
 - Flow capacity changes due to signal timing
 - Queue spillbacks due to high demand and low capacity
- Minimizing total travel costs
- A mathematical program with equilibrium constraints (MPEC)
 - Use PATH solver in GAMS
 - Global optimum may not be found (due to nonlinearity and non-convexity)

MODELLING FRAMEWORK

 $\min_{\{g_i^m(c)\}} \quad TTT$

Green time allocation Traffic Signal Control Constraints link 1 link 2 $\overline{C}_{link1} = C_{link1} \frac{g_j^1}{g_j^1 + g_j^2}$ $\overline{C}_{link2} = C_{link2} \frac{g_j^2}{g_j^1 + g_j^2}$

UE behavior

Other constraints

- Initial condition: empty network
- Terminal condition: traffic cleared
- Non-negativity conditions
- Traffic demand

NUMERICAL RESULTS

Origin-Destination (OD) Demand

Layout and data of the Sioux Falls network, http://http://www.bgu.ac.il/ bargera/tntp/

NUMERICAL RESULTS

System total travel time

Scenarios	UE constr.	No UE constr.
Fixed signal	Ι	II
Adaptive signal	III	IV

Adaptive Signal Control

SOME REMARKS

and induced demand)

- Joint routing/control in different levels can improve overall network performance
- Joint routing and control presents many challenging control/optimization problems
 - Solution of non-convex large scale MPEC problems
 - Model realism vs complexity,
 - Parameter identification and simulation of large networked systems
 - Stability of adaptive routing/control
 - Testbeds for validation

SOME REMARKS

- With automatous vehicles, a variety of new control problems arises
 - Platooning and trajectory control
 - Fully or partially scheduled systems
 - Mixed traffic flow control

REFERENCES

- H Chai, HM Zhang, D Ghosal, CN Chuah. Dynamic traffic routing in a network with adaptive signal control. Transportation Research Part C: Emerging Technologies 85, 64-85. 2017
- JWu, D Ghosal, M Zhang, CN Chuah. Delay-based traffic signal control for throughput optimality and fairness at an isolated intersection. IEEE Transactions on Vehicular Technology 67 (2), 896-909. 2017
- H Yu, R Ma, HM Zhang. Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network. Transportation Research Part B: Methodological 110, 302-325, 2018
- Allsop R.E. Some Possibilities for Using Traffic Control to Influence Trip Distribution and Route Choice.
 6th International Symposium on Traffic and Transportation Theory. Amsterdam: Elsevier. 1974, pp. 345-374.

REFERENCES

- Smith M.J. Traffic Control and Route Choice: A Simple Example. Transportation Research Part B.Vol.13, No.4, 1979, pp.289-294.
- Smith M.J. The Existence of an Equilibrium Solution to the Traffic Assignment Problem When There Are Junction Intersections. *Transportation Research Part B.Vol.* 15, No.6, 1981, pp.442-452.
- Smith M.J. Properties of a Traffic Control Policy which Ensure the Existence of Traffic Equilibrium Consistent with the Policy. *Transportation Research Part B.Vol.* 15, No.6, 1981, pp.453-462.
- Yang, H. and Yagar, S. Traffic assignment and signal control in saturated road networks, *Transportation Research Part A.Vol.29*, No.2, 1995, pp. 125-139.
- Ghatee M., Hashemi S.M., Descent Direction Algorithm with Multicommodity Flow Problem for Signal Optimization and Traffic Assignment Jointly. *Applied Mathematics and Computation*. Vol. 188, 2007, pp. 555-566.