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Traffic congestion problems

Stop-and-go	traffic	oscillations

Moving	traffic	shockwave

Downstream	traffic	bottleneck

Moving	shock																					

Control	of	Flow	Dynamics	in	CONGESTED	Traffic

Suppressing	STOP-AND-GO	oscilla7ons												(coupled	PDEs)

Keeping	SHOCKS	from	driAing	upstream									(ODE	with	delays)

Maximizing	flow	through	BOTTLENECK												(extremum	seeking)
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Boundary control framework under traffic management system

Ramp metering, flow rate actuated Varying speed limit, velocity actuated
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PDE Backstepping Control of
Stop-and-Go Traffic



Aw-Rascle-Zhang model

⇢(x, t) = traffic density, v(x, t) = traffic speed

LWR model @t⇢+ @x(⇢v) = 0

@t(v + p(⇢)) + v@x(v + p(⇢)) = V (⇢)�v
⌧

second-order, macroscopic, nonlinear hyperbolic PDEs

Dan Work




Freeway traffic open-loop simulation

⇢? = 120 vehicles/km, v? = 10 m/s, L = 500 m, ⌧ = 60 s

Constant incoming and outgoing flow rate at q?

22 mph

eigenvalues in RHP!



Control objective: ⇢̃(x, t) ! 0, ṽ(x, t) ! 0

⇢(x, t), v(x, t) ⇢?, v?

Uniform distributed vehicles on the road, constant density, velocity and flow rate.

Density disturbance: ⇢̃(x, t) = ⇢(x, t)� ⇢?

Speed disturbance: ṽ(x, t) = v(x, t)� v?



Linearized ARZ model (⇢̃, ṽ) around uniform (⇢?, v?)

⇢̃(x, t) = density disturbance, ṽ(x, t) = speed disturbance

⇢̃t + v?⇢̃x =� ⇢?ṽx

ṽt � (�p? � v?)ṽx =�
ṽ + p̃

⌧

• density disturbance ⇢̃ “propagates” at traffic speed setpoint v?

• speed disturbance ṽ “counter-propagates” at �p? � v?
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Coupled 2⇥ 2 hyperbolic PDE model

w̄

v̄

x = 0 x = L

U(t)

r0 r1

@tw̄ + v?@xw̄ =0
@tv̄ � (�p? � v?)@xv̄ =c(x)w̄

w̄(0, t) =� r0v̄(0, t)
v̄(L, t) =r1w̄(L, t) + U(t)

Positive feedback throughout the domain



Full-state feedback control design

Theorem. Full-state feedback control law

Uout(t) =� r0⇢
?(v(L, t)� v?)

+ r0⇢
?
Z L

0


M(L� ⇠)� r0K(L, ⇠) exp

✓
⇠

⌧v?

◆�
(v(⇠, t)� v?)d⇠

+ k0

Z L

0
K(L, ⇠) exp

✓
⇠

⌧v?

◆
(⇢(⇠, t)v(⇠, t)� ⇢?v?)d⇠,

makes equilibrium w̄ ⌘ v̄ ⌘ 0 exponentially stable in L2 and equilibrium reached

in finite time t = tf .

green/red light 
at downstream ramp



Full-state feedback control design: backstepping

w̄t =� v?w̄x

v̄t =(�p? � v?)v̄x + c(x)w̄

w̄(0, t) =� r0v̄(0, t)

v̄(L, t) =r1w̄(L, t) + U(t)

Backstepping transformation:

↵(x, t) =w̄(x, t)

�(x, t) =v̄(x, t)�
Z x

0
M(x� ⇠)v̄(⇠, t)d⇠ �

Z x

0
K(x, ⇠)w̄(⇠, t)d⇠

Kernel equations

(�p? � v?)Kx � v?K⇠ =c(⇠)K(x� ⇠,0)

K(x, x) =�
c(x)

�p?

where {0  ⇠  x  L}

M(x) =�K(x,0)



Full-state feedback simulation

⇢? = 120 vehicles/km, v? = 10 m/s, L = 500 m, ⌧ = 60 s



Boundary observer for traffic estimation

Boundary measurement (of velocity and flow):

Y (t) = w̄(L, t)

Observer

ŵt =� v?ŵx + r(x)(Y (t)� ŵ(L, t))

v̂t =(�p? � v?)v̂x + c(x)ŵ + s(x)(Y (t)� ŵ(L, t))

ŵ(0, t) =� r0v̂(0, t)

v̂(L, t) =r1Y (t) + U(t)

Output injection gains r(x) and s(x) need to be designed



Density and velocity estimates

estimation 
completed
in 75 sec



Data validation of boundary observer
Next Generation Simulation (NGSIM) traffic data I-80 in California



Traffic density and velocity for 5 : 15 pm - 5 : 30 pm

traffic field data

states estimation

mean velocity 12 mph
in RUSH HOUR traffic

estimator converges
in 3-5 minutes



Estimation errors of boundary observer
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Two-lane and Two-class
traffic congestion control



Two-lane and Two-class traffic congestion control

Lane changing segregates drivers
into the more ”risk-tolerant” ones in
the fast lane and more ”risk-averse”
ones in the slow lane.

Mixed vehicle types induce creeping
effect where the slow and bulky ve-
hicles block the traffic and small and
fast vehicles getting through.
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Two-lane ARZ model

Coupled 4⇥ 4 nonlinear first-order hyperbolic PDEs

@t⇢f + @x(⇢fvf) =
1

Ts
⇢s �

1

Tf
⇢f

@t(⇢fvf) + @x(⇢fv
2
f )� (⇢f�pf)@xvf =

1

Ts
⇢svs �

1

Tf
⇢fvf +

⇢f(V (⇢f)� vf)

Te
f

@t⇢s + @x(⇢svs) =
1

Tf
⇢f �

1

Ts
⇢s

@t(⇢svs) + @x(⇢sv2s )� (⇢s�ps)@xvs =
1

Tf
⇢fvf �

1

Ts
⇢svs +

⇢s(V (⇢s)� vs)

Te
s

T e
i relaxation time that reflects driver’s behavior adapting to the traffic equi-

librium velocity in lane i.
Ti describe driver’s preference for remaining in lane i, which relates to local
density and velocity.

lane changes ~ heat exchanger



Two-class ARZ model

Coupled 4⇥ 4 nonlinear first-order hyperbolic PDEs

@t⇢1 + @x(⇢1v1) =0

@t(v1 + p1(AO)) + v1@x(v1 + p1(AO)) =
Ve,1(AO)� v1

⌧1
@t⇢2 + @x(⇢2v2) =0

@t(v2 + p2(AO)) + v2@x(v2 + p2(AO)) =
Ve,2(AO)� v2

⌧2

• Vehicle class i density ⇢i(x, t) and speed vi(x, t) with i = 1,2

• Dependence on “Area Occupancy” AO(⇢1, ⇢2) = a1⇢1(x,t)+a2⇢2(x,t)
W



Coupled 4⇥ 4 nonlinear first-order hyperbolic PDEs

Two-lane Two-class

w̃s

ṽs

x = 0 L

w̃f

ṽf

ṽi(L, t) = Ui(t)

VSL

VSL

x = 0 L

w̃1

w̃2

w̃3

ṽ

U(t)

2+ 2 coupled PDE system 3+ 1 coupled PDE system



Two-lane traffic full-state feedback simulation

fast lane

slow lane



Two-class traffic full-state feedback simulation

Class1 small and fast

Class2 big and slow



Bilateral Boundary Control of
Moving Traffic Shockwave       Moving Shockfront              



Model with state-dependent delays

Uin(t) Uout(t)

Df(t) Dc(t)

Ẋ(t) =� b (Uin(t�Df(X(t))) + Uout(t�Dc(X(t)))

Df(t) =
l(t)

u
, Dc(t) =

L� l(t)

u
Predictor feedback design is to compensate the input delays by feeding back
the future states so that the inputs arrive at the moving interface as if without
delays.

shock



LWR traffic model

@
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LWR traffic model
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LWR traffic model
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(Rankine-Hugoniot jump condition)



Bilateral predictor-based control

Uin(t) =Kf

"

X(t)�
b

u

 Z l(t)

0
⇢̃f(⇠, t)d⇠ +

Z min{L,2l(t)}

l(t)
⇢̃c(⇠, t)d⇠

!#

Uout(t) =Kc

"

X(t)�
b

u

 Z L

l(t)
⇢̃c(⇠, t)d⇠ +

Z l(t)

max{0,2l(t)�L}
⇢̃f(⇠, t)d⇠

!#

PREDICTION of shock position over the CONGESTED/downstream segment



Experiment result of open-loop and closed-loop

Open-loop becomes fully congested after 25 minutes while moving shockwave of
closed-loop stopped at 1600 m, leaving upstream traffic in free regime.

upstream

downstream

Text

uncontrolled controlled

Microscopic simulation experiment in AIMSUN                     

time
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Extremum Seeking Control of
Downstream Traffic Bottleneck



Downstream traffic bottleneck

0 L

Zone C
Zone Bqin qout

• Capacity drop at the bottleneck area, hard to model

• Constant incoming flow causes traffic congestion downstream



Downstream traffic bottleneck

Q(�)

QB(�)

�m��

q�

Upstream traffic dynamics with qin(t) = Q(⇢(0, t))

@t⇢+ @x(Q(⇢)) =0

Unknown quadratic map of bottleneck area

qout(t) =QB(⇢(L, t)) = q? +
H

2
(⇢(L, t)� ⇢?)2



Extremum Seeking Control with delay

�t� + �x(�V (�)) = 0
�(L, t)

�

�
N(t)

M(t)

G

Ĥ

U(t)

qout(t)
QB(·)

LWR PDE model

S(t)

�(t)

+

�(0, t) = �(t)

�̂(t)
1

s

c

s + c k +

1

s
�t� + u�x� = 0

�(0, t) = U(t)
�

Predictor feedback with Hessian estimate

U(t) = T

⇢
k
✓
G(t) + Ĥ(t)

Z t

t�D
U(⌧)d⌧

◆�

G(t) = M(t)qout(t), Ĥ(t) = N(t)qout(t)



Simulation closed-loop with ES control
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Thanks for your attention!


