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Control of Flow Dynamics in CONGESTED Traffic

Suppressing STOP-AND-GO oscillations (coupled PDEs)



Control of Flow Dynamics in CONGESTED Traffic

Keeping SHOCKS from drifting upstream (ODE with delays)



Control of Flow Dynamics in CONGESTED Traffic

Maximizing flow through BOTTLENECK (extremum seeking)



Ramp metering, flow rate actuated



Varying speed limit, velocity actuated



PDE Backstepping Control of
Stop-and-Go Traffic



Aw-Rascle-Zhang model

p(x,t) = traffic density, v(x, t) = traffic speed

LWR model |0;p + 8z(pv) = 0

0:(v + p(p)) + v0: (v + p(p)) = L=

T

second-order, macroscopic, nonlinear hyperbolic PDEs
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Freeway traffic open-loop simulation

p* = 120 vehicles/km, v*= 22mph L =500m, 7=060s

eigenvalues in RHP!



Control objective

p(z,t),v(z,t) p* v
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Linearized ARZ model

p(x,t) = density disturbance, v(x,t) = speed disturbance

~

pt+ v pe = — p's
v+ p

T

O — (yp* — v") U = —



v+ p

T

O — (yp* — ")V = —

e speed disturbance v “counter-propagates” at vp* — v*



Coupled 2 x 2 hyperbolic PDE model

Positive feedback throughout the domain



green/red light
at downstream ramp

Theorem. Full-state feedback control law

Uout(t) = —rop™(v(L,t) —v*)
+root [ ML~ ) —rok L,y exp (5)] (we 1) — v

ko [ K& exo (-5) (o6 Dule ) — pto)e,

makes equilibrium w = v = 0 exponentially stable in L and equilibrium reached
in finite time t = t .



Kernel equations
(vp* = v ) Ky — v K =c(§) K(z — €, 0)
c(x

Yp*

K(x,z) = —



Full-state feedback simulation



Boundary observer for traffic estimation

Boundary measurement (of velocity and flow):

Y(t) = @(L, t)

Observer

Wy = — v Wy + r(x) (Y (t) —w(L,t))

v =(yp* — v )z + c(x)® + s(x) (Y (t) —w(L,t))
w(0,t) = — rqv(0,1t)
v(L,t) =r1Y (1) + U(t)



Density and velocity estimates

estimation
completed
in 75 sec




Data validation of boundary observer
Next Generation Simulation (NGSIM) traffic data 1-80 in California



Traffic density and velocity for 5 : 15 pm -5 : 30 pm

traffic field data

states estimation

mean velocity 12 mph
in RUSH HOUR traffic

estimator converges
in 3-5 minutes




Estimation errors of boundary observer

(6}
o

- - velocity
—density |

N
o
[

N W
o o
\ \

errors percentage (%)
o

time (min)



Two-lane and Two-class
traffic congestion control



Two-lane and Two-class traffic congestion control

\

Lane changing segregates drivers
into the more ’risk-tolerant” ones in
the fast lane and more ’risk-averse”
ones in the slow lane.



Two-lane and Two-class traffic congestion control

.

Mixed vehicle types induce creeping
effect where the slow and bulky ve-
hicles block the traffic and small and
fast vehicles getting through.



Two-lane ARZ model

Coupled 4 x 4 nonlinear first-order hyperbolic PDEs

Otps + Ox(psuy) =Tisps — Tifpf
oi(pyvs) + Ou(ppvs) — (ppyps)Oavy =Ti8psvs — Tifpf’l}f + pf(v(';f; —vp)
Otps + Oz (psvs) =i,0f — ips
Tf s
- 1 ps(V (ps) — vs)

875(/03?13) + 81;(08@3) — (PS’Yps)aa:US :T_fpfvf - _SpSUS + Te



Two-class ARZ model

Coupled 4 x 4 nonlinear first-order hyperbolic PDEs

Otp1 + 0z(prv1) =0

V. 1(AO) —
Or(v1 + p1(AO0)) + v10:x(v1 + p1(AO)) = = Tl) -
Op2 + Oz (p2v2)
V. 2(AO) —
Ot(vp + p2(AO)) 4+ v20:(vo + po(AO)) = ’2( 7_2) v2

“Area Occupancy” AO(p1, po) = alpl(x’t)‘}"/@p?(x’t)



Coupled 4 x 4 nonlinear first-order hyperbolic PDEs

Two-lane Two-class
Wy W
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Ui (L, t) = Us(t) Ul(t)
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2 + 2 coupled PDE system 3 + 1 coupled PDE system



Two-lane traffic full-state feedback simulation

slow lane

fast lane



Two-class traffic full-state feedback simulation

Classl small and fast

Class2 big and slow



Bilateral Boundary Control of
Moving Shockfront
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LWR traffic model

2
0 0 Ps density of “FREE traffic’
(upstream of shock)



LWR traffic model

2
o _ o  p density of “FREE traffic’
8tp f=="tm Or i om (upstream of shock)
2
o pe = — vmﬂ oc — £C density of “CONGESTED traffic’
ot ox om (downstream of shock)



LWR traffic model
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(Rankine-Hugoniot jump condition)

density of “FREE traffic”

(upstream of shock)

density of “CONGESTED traffic”
(downstream of shock)

shock front location



Bilateral predictor-based control

b [ 1) in{L,21()}
Uin(t) =K [X(t) -~ ( [ e+ [ ﬁc(f,t)drS)]

Uout(t) =Kc max{0,2((t)—L}

| —

b [ (L 1(t)
X(t) — ; </l(t) ﬁc(fa t)d£ + / ﬁf(ga t)d§>

PREDICTION of shock position over the CONGESTED/downstream segment




Microscopic simulation experiment in AIMSUN

uncontrolled

Open-loop becomes fully congested after 25 minutes



Microscopic simulation experiment in AIMSUN

controlled

shockwave of
closed-loop stopped at 1600 m, leaving upstream traffic in free regime.



Extremum Seeking Control of
Downstream Traffic Bottleneck



Downstream traffic bottleneck
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e Capacity drop at the bottleneck area, hard to model




Downstream traffic bottleneck

Upstream traffic dynamics with ¢;,(¢t) = Q(p(0,t))
Op + 0:(Q(p)) =0

Unknown quadratic map of bottleneck area

dou(t) =Qp(p(L, 1)) = 4"+ (p(L,) — p")?



Extremum Seeking Control with delay

LWR PDE model
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Outgoing flow (veh/s)

low flow
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Outgoing flow (veh/s)
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Thanks for your attention!



