

Traffic Flow Control in a Connected Environment

Petros Ioannou Center for Advanced Transportation Technologies METRANS University Transportation Center University of Southern California Los Angeles, CA, USA

7/10/2019

NSF Workshop June 8-9, 2019

University of Southern California

Brief History

- Automated Highway System Program started in the 80's ended with 1997 Demo. Platooning plus other technologies
- Replaced with IV initiative with vehicle safety as priority
- 2004, 2005, 2007 DARPA Challenge Competition
- Current: Autonomous Vehicles, 5 levels of Autonomy (Google Cars, Tesla, Uber etc)
- Efforts are to get rid of the driver when vehicles is the cause of congestion

NSF Workshop June 8-9, 2019

Vehicle Control Safety and Platooning

Drag reduction: Fuel savings, lower pollution

Safety Objective: No vehicle should be put in a position it cannot handle

NSF Workshop June 8-9, 2019

3

WHAT IS THE MAIN TRANSPORTATION PROBLEM? This is what we usually see and experience

Image from www.msnbc.com

NSF Workshop June 8-9, 2019

7/10/2019

University of Southern California

Transportation System for Moving Goods and People is far more complex

7/10/2019 NSF Workshop June 8-9, 2019

University of Southern California

5

CURRENT TRANSPORTATION SYSTEM

- Nonlinear Dynamical System of interconnected systems
- Open Loop Most of the Time
- Limited ineffective feedback
- Lack of sensor data and connectivity

Consequences

- Congestion
- Inefficient utilization of infrastructure
- Safety
- Pollution
- Long travel times, High cost
- Unbalanced in time and space

7/10/2019

6

Connectivity will Revolutionize Transportation

- Open loop operations will become more stable and robust via active feedback
- Information/data are crucial in optimizing processes and movements of people and goods
- Enhance coordination
- Vehicle to Infrastructure Connectivity is Proven Technology
- Private sector is moving faster to satisfy user needs

Traffic Management Control (TMC) System

NSF Workshop June 8-9, 2019

Closing the loop with the Highway System

NSF Workshop June 8-9, 2019

9

MANETs For Lane Change Control and Collision Avoidance

NSF Workshop June 8-9, 2019

Control of traffic at incidents and bottlenecks

- Forced lane changes performed at vicinity of bottlenecks introduce capacity drop, which further harm the flow rate
- Appearance of trucks exacerbate the congestion condition

- Highway congestions at bottlenecks is detrimental to traffic mobility, safety and environment
- Upstream drivers lack of information of bottleneck therefore blindly change lanes when traffic slows down

NSF Workshop June 8-9, 2019

NO CONTROL NO CONNECTIVITY

University of Southern California

Modeling of Highway Bottleneck

Capacity drop

- Capacity will drop when $\rho > \rho_{d,c}$.
- Difficult to maintain maximum flow rate by controlling just the speed

Design of Lane Change Controller to prevent last minute forced lane changes

Two Parts:

Design of lane change control distance

How far from incident should start

recommending lane changes?

- Design of lane change control pattern
 - What lane change recommendation should give in each lane?
 - Not a traditional control problem as the key variable is not time but space.

Design of Lane Change Controller based on an empirical model developed using simulation tests

Length of LC Control Segment:

$$d_{LC} = \xi \cdot n$$

n: number of lanes closed

 ξ : design parameter based on the demand and capacity

Effect of Lane Change Control

Effect of Lane Change Control

Without LC Control:

- Data points for $\rho_d \leq \rho_{d,c}$ fits the linear relation very well;
- Significant capacity drop occurs, $\epsilon \approx 0.16$
- Data points concentrate in high density area

With LC Control:

- No obvious capacity drop
- ρ_d at $\rho_d > \rho_{d,c}$ is approximately linear with a negative
- Most data points scatter close to $ho_d >
 ho_{d,c}$

Protecting the Network

Variable Speed Limit Control

- If demand increases to the point that exceeds capacity of bottleneck then congestion will kick in. Need a control mechanism to protect the network
- Provide speed recommendations upstream the bottleneck or incident in order to slow down the traffic flow to become close to the throughput of the bottleneck.
- Approach is implemented at various highways in Europe and US but in an adhoc way

1.Carlos F Daganzo. The cell transmission model: A dynamic representation of highway track consistent with the hydrodynamic theory. *Transportation Research Part B: Methodological*, 28(4):269-287, 1994.

NSF Workshop June 8-9, 2019

Traffic Flow Model and Stability Analysis

Let $I = (C_d, C, d)$ be the state of the network and Ω be the set of feasible values of I with $d \ge 0, C_d > 0, C > 0$. All possible relationships between C_d, C and d are described by the tree diagram below:

NSF Workshop June 8-9, 2019

Equilibrium Points when Inflow = Outflow i.e. $q_1 = q_2 \implies \dot{\rho} = 0$

NSF Workshop June 8-9, 2019

Variable Speed Limit Control

Theorem 1. For constant but otherwise arbitrary demand d, we have the following results:

- a) Let $I \in \Omega_1$. Then $\forall \rho(0) \in [0, \rho^j]$, $\rho(t)$ converges exponentially fast to $\frac{d}{v_f}$.
- b) Let $I \in \Omega_2$. Then
 - $\forall \rho(0) \in [0, \frac{C_d}{v_f}], \ \rho(t) \ converges \ exponentially \ fast \ to \ \frac{d}{v_f} = \frac{(1-\epsilon_0)C_d}{v_f}.$

•
$$\forall \rho(0) \in \left(\frac{C_d}{v_f}, \rho^j - \frac{d}{v_f}\right], \ \rho(t) = \rho(0), \forall t \ge 0.$$

- $\forall \rho(0) \in (\rho^j \frac{d}{w}, \rho^j], \ \rho(t) \ converges \ exponentially \ fast \ to \ \rho^j \frac{d}{w} = \rho^j \frac{(1-\epsilon_0)C_d}{w}.$
- c) Let $I \in \Omega_3$. Then
 - $\forall \rho(0) \in [0, \frac{C_d}{v_f}], \ \rho(t) \ converges \ exponentially \ fast \ to \ \frac{d}{v_f}.$
 - $\forall \rho(0) \in (\frac{C_d}{v_f}, \rho^j], \ \rho(t) \ converges \ exponentially \ fast \ to \ \rho^j \frac{(1-\epsilon_0)C_d}{w}.$
- d) Let $I \in \Omega_4$. Then $\forall \rho(0) \in [0, \rho^j]$, $\rho(t)$ converges exponentially fast to $\rho^j \frac{(1-\epsilon_0)C_d}{w}$.
- e) Let $I \in \Omega_5$. Then $\forall \rho(0) \in [0, \rho^j]$, $\rho(t)$ converges exponentially fast to $\frac{\min\{d, C\}}{v_f}$.

Variable Speed Limit (VSL) Control

NSF Workshop June 8-9, 2019

Density Model

$$\begin{split} \dot{\rho} &= q_1 - q_2, \ 0 \leq \rho(0) \leq \rho^j \\ q_1 &= \min\{d, \frac{vw\rho^j}{v+w}, C, w(\rho^j - \rho)\} \\ q_2 &= \min\{v_f \rho, \tilde{w}(\tilde{\rho}^j - \rho), 1 - \epsilon(\rho)C_d\} \end{split}$$

VSL Controller

$$\bar{v}_{1} = \frac{w[q_{2} - \lambda(x + \delta_{1})]}{w\rho^{j} - [q_{2} - \lambda(x + \delta_{1})]}$$

$$\bar{v}_{2} = \frac{w(q_{2} - \lambda x)}{w\rho^{j} - (q_{2} - \lambda x)}$$

$$v_{i} = \operatorname{med}\{0, \bar{v}_{i}, v_{f}\}$$

$$v = \begin{cases} v_{1} \quad \text{if } \rho(0) > \frac{C_{d}}{v_{f}} \text{ and } \rho(t) > \frac{C_{d}}{v_{f}} - \delta_{2} \\ v_{2} \quad \text{if } \rho(0) > \frac{C_{d}}{v_{f}} \text{ and } \rho(t) = \frac{C_{d}}{v_{f}} - \delta_{2} \\ v_{2} \quad \text{if } \rho(0) \le \frac{C_{d}}{v_{f}} \text{ and } \rho(t) \le \frac{C_{d}}{v_{f}} \end{cases}$$

where $x = \rho - \frac{C_d}{v_f}$, and

$$0 < \delta_2 < \delta_1 < \frac{C_d}{v_f}, \ 0 < \lambda < \frac{v_f w \rho^j}{C_d}$$

NSF Workshop June 8-9, 2019

25

Main Theorem

The proposed VSL Controller guarantees that densities converge exponentially to a single equilibrium point

$$\rho^* = \frac{\min[d, C_d]}{v_f}$$

that corresponds to maximum possible flow and speed under any demand and capacity constraints.

Proof: based on simple Lyapunov stability arguments

NSF Workshop June 8-9, 2019

University of Southern California

NSF Workshop June 8-9, 2019

7/10/2019

University of Southern California

Why it Works: Less for More https://www.youtube.com/watch?v=9QwPfe-_T7s

NSF Workshop June 8-9, 2019

Multiple Sections

$$\begin{split} \dot{\rho}_{i} &= q_{i} - q_{i+1}, 0 \leq \rho_{i}(0) \leq \rho^{j}, \text{for } i = 1, 2, ..., N \\ q_{1} &= \min\{d, \frac{v_{0}w\rho^{j}}{v_{0} + w}, \frac{v_{1}w\rho^{j}}{v_{1} + w}, w(\rho^{j} - \rho_{1})\} \\ q_{i} &= \min\{v_{i-1}\rho_{i-1}, \frac{v_{i-1}w\rho^{j}}{v_{i-1} + w}, \frac{v_{i}w\rho^{j}}{v_{i} + w}, w(\rho^{j} - \rho_{i})\}, i = 2, 3, ..., N - 1 \\ q_{N} &= \min\{v_{N-1}\rho_{N-1}, \frac{v_{N-1}w\rho^{j}}{v_{N-1} + w}, C, w(\rho^{j} - \rho_{N})\} \\ q_{N+1} &= \min\{v_{f}\rho_{N}, (1 - \epsilon(\rho_{N}))C_{d}, \tilde{w}(\tilde{\rho}^{j} - \rho_{N})\} \end{split}$$

NSF Workshop June 8-9, 2019

32

University of Southern California

Numerical Simulation

1. Simulation Network:

16km-long southbound segment of I-710 freeway in California, whose normal capacity without an accident is about 6800 veh/h.

2. Incident Scenarios:

We construct accident scenarios with different accident durations

	Scenario No.	Incident Duration	
3.	1	30 min	
1(2	10 min	io ir
m	3	Not Removed	

33

Fundamental Diagram under Control

- Traffic states can be stabilized in a small region for different demand levels
- Density stops increasing when demand higher than the capacity
- Flow speed decreases when density close to the critical value

NSF Workshop June 8-9, 2019

Performance

Criteria	Control Improvements for considered scenarios	
Total Time Spent in Network	10-15%.	
Number of Stops	80-90%	
Number of Lane Changes	6-10%	
NOx	6-7%	
CO2	7-8%	
Fuel	7-8%	
PM25	4-7%	

35

Coordination and connectivity in multimodal: Co-Simulation Optimization Control Approach

NSF CPS Synergy: Cyber Physical Regional Freight Transportation System

NSF Workshop June 8-9, 2019

Conclusions

- Connectivity (V to V and V to I) is a key technology in achieving transportation efficiency
- Connectivity will generate vital information and provide missing data that are necessary for effective control and optimization designs
- Vehicle automation, self driving vehicles will face the major challenge of Safety
- The main causes of congestion are too many vehicles. Getting rid of the driver and keeping the vehicle is unlikely to reduce congestion
- Congestion is a system level problem. The system is dynamical and feedback control and optimization are important tools to make it stable, robust and efficient

37

THANK YOU

38