Behavioral Considerations for Integrated Modeling in an Era of Disruptive Emerging Transportation Technologies

Ram M. Pendyala, Professor and Interim Director
School of Sustainable Engineering and the Built Environment

Acknowledgements

• ASU Team
 – Xuesong Zhou, Associate Professor
 – Sara Khoeini, Assistant Research Professor
 – Shivam Sharda, Denise Capasso da Silva, Irfan Batur,
 Tassio Magassy, Taehooie Kim

• Chandra Bhat, The University of Texas at Austin, and team of outstanding students
Acknowledgements

• TOMNET Team
 – Patricia L. Mokhtarian, Georgia Tech
 – Giovanni Circella, Georgia Tech and UC Davis
 – Deborah Salon, ASU
 – Michael Maness, University of South Florida
 – Fred Mannering, University of South Florida
 – Cynthia Chen, University of Washington
 – Daniel Abramson, University of Washington
 – Abdul Pinjari, Indian Institute of Science, Bangalore
 – and many fabulous students!

What is Going On With Travel Demand?

Disruption due to Socio-demographic shifts, attitudinal shifts, e-commerce, and IoT
Frequency of Internet Use

NHTS 2001 – Generation X
N=3849

NHTS 2017 – Millennials
N=8328

Framework

SOV + HOV drive VMT

Geographical effects

Period effects

Age effects (Controlled 26-30 years)

Cohort (generational) effects

Unexplained effects

Socio-economic effects
Summary and Conclusions

Vehicle Miles Traveled is lower for Millennials, but the size of the generation (cohort) effect is tiny (less than 0.3%). VMT differences are largely due to socio-economic and demographic characteristics. The period effect is actually greater than the generation effect.

Huge UNEXPLAINED portion of person VMT variance!
The Future of Mobility

- Connected vehicles
 - V2V and V2I configurations
- Automated vehicles
 - Various degrees of automation
- Autonomous vehicles
 - Truly driverless
- (Shared/Hailed) Mobility Services (TNCs)
 - On-demand
- Electrification
- No Travel – Virtual and Delivered!
Technology Adoption

https://www.visualcapitalist.com/rising-speed-technological-adoption/

125 Year Span!

Technology Adoption

https://www.visualcapitalist.com/rising-speed-technological-adoption/

65 Year Span!
Waymo Now Giving Self-Driving Car Rides to the Public in Phoenix
Average Joes are about to get a crack at riding in the company's autonomous minivans.

AV adoption

Slight majority of Americans would not want to ride in a driverless vehicle if given the chance; safety concerns, lack of trust lead their list of concerns

% of U.S. adults who say they would/would not want to ride in a driverless vehicle

44% Yes, would want to ride in a driverless vehicle

56% No, would not want to ride in a driverless vehicle

Among those who say yes, % who give these as the main reasons

- Just for the experience/think it would be cool: 37%
- Would be safer: 17%
- Can do other things while driving: 15%
- Less stressful than driving: 13%
- Greater independence: 4%
- Convenience: 4%
- Good for long trips: 2%
- Other: 9%

Among those who say no, % who give these as the main reasons

- Don't trust it/warned about giving up control: 42%
- Safety concerns: 30%
- Enjoy driving: 9%
- Feel technology is not ready: 3%
- Potential for hacking: 2%
- Other: 8%

How a Self-Driving Uber Killed a Pedestrian in Arizona

By TROY GRIGGS and DAISUKI WAKABAYASHI

A woman was struck and killed on Sunday night by an autonomous car operated by Uber in Tempe, Ariz. It was believed to be the first pedestrian death associated with self-driving technology.

What We Know About the Accident

fear about riding in a fully autonomous vehicle

78% → 63% → 73%

early 2017 early 2018 may 2018

Survey taken few weeks after the Uber fatal accident in Tempe, AZ

Sources:
Consumers not ready for full autonomy

Consumers not ready for full autonomy

Question: How do we control a system in which the most important agent doesn’t wish to be controlled?

Evolution of Ride-hailing Frequency: Age 18-34 years

Observed Heterogeneity in Evolution – Puget Sound Regional Travel Survey
Evolution of Ride-hailing Frequency: Age (65 to 74 and ≥ 85)

Observed Heterogeneity in Evolution – Puget Sound Regional Travel Survey

65 - 74 years

85 years and above

Modeling Approaches

1 Electrification
2 Sharing
3 Automation
4 Deliveries

Scenarios & Parameters ➔ Models & Simulations ➔ Fake Forecasts

So little is known about the future

Behaviors Defined by Attitudes, Perceptions, Preferences, Values, and Evolutionary Dynamics
How Will Emerging Technologies Impact VMT?

Vehicle Ownership and So Much More!

Pros
- May replace a drive-alone trip with Uber + transit, or other combo (solves transit’s first- and last-mile problem)
- May eliminate a personally-owned car (separately good), reducing unnecessary trips

Neutral
- May replace a kiss-and-ride or PNR trip
- Or replace some other drive-alone trip

Cons
- May displace a transit trip (not only increasing VMT, but undermining transit)
- May replace one carpool trip with multiple single-rider AV trips
- Makes travel easier, cheaper → may generate new trips
- Time saved (e.g., for parents using Shuddle for their children) may be used to generate new trips
- On-demand vehicles cruising, deadheading

Source: Patricia L. Mokhtarian, Georgia Tech

The “I” Era in Transportation

- Information (real-time, predictive, and personalized)
 - A focus on information provision and data collection
- Individual
 - A focus on individual agents
- Integrated
 - Addressing the built environment – travel demand – network supply nexus
- Intelligent
 - A user responsive, adaptive, and flexible multimodal transportation system
- Innovative
 - Big data to monitor and optimize complex adaptive system performance
App-Empowered Connected Travelers

Connected, Shared, and Autonomous Agents

- Connectivity:
 - Among vehicles of all types
 - Among vehicles and a variety of roadway infrastructures
 - Among vehicles, infrastructure, and wireless consumer devices

- Enables **real-time activity/trip planning** (across spectrum of choices)

- Integrated models for era of connectivity and real-time information
A Consumer Adoption Modeling Framework

- Consideration of factors which significantly affect consumers’ preferences (Technological factors, Non-technological factors)
- Reflecting heterogeneous consumers’ preferences

Estimation of consumers’ preference and willingness to pay for advanced technologies and alternative fuel types

Multiple discrete-continuous probit (MDCP) model with MACML

- Strategic management of advanced vehicle Technology options and fuel types
- Implications depending on consumer group

Success of new products

MMNP Model of Smart Vehicle Options

- Marginal willingness-to-pay (MWTP) computed for each attribute
 - Amount of money required to maintain a consumer’s current level of utility when one unit of an attribute is changed
- Also compute relative importance (RI) of option based on worth of each attribute
- Assuming deterministic portion of utility (V_{nj}) may be divided into price-dependent component and non-price dependent component:

$$MWTP_{x_{jk}} = -\frac{\partial U_{nj}}{\partial x_{jk}} = -\frac{\beta_k}{\beta_{price}}$$

$$RI_k = \frac{\text{part} - \text{worth}_k}{\sum_k \text{part} - \text{worth}_k} \times 100$$
Level 0 Model Integration - Classic Sequential Paradigm

- Activity-Travel Model
 - Trip Information
 - Dynamic Traffic Assignment Model
 - Update O-D Travel Times
 - Update Time-Dependent Shortest Path
 - Convergence?
 - NO
 - YES

End

Level 4 Model Integration: Pre-trip + Enroute Traveler Choices

- Activity-Travel Demand Model
 - Trip Record 1
 - Origin O
 - Destination D
 - Mode M
 - Person(s) reached destination and pursue activity
 - Dynamic Traffic Assignment Model
 - Person(s) received traffic congestion information
 - Trip Record 2
 - Origin O
 - Destination D
 - Mode M
 - Vehicle Information

- Person(s) reached destination and pursue activity

Trips in distress
Trips that arrived at their destination

6 second interval

1440 minutes

A portion of trips on the network are checked on every N minutes (N = 3 mins in this figure)
Need Data on Behavioral Adaption

Collect revealed preference data during events in the real world

I-85 Bridge Collapse, Atlanta 2017

Realizing Behavioral Change That LASTS

• The Spitsmijden reward-based travel demand management strategy
 • Assess the effectiveness of incentives in reducing morning peak period vehicular traffic volumes
• October 2006: 7:30 – 9:30 AM commuters on Dutch A12 motorway
• 14 week experiment
 • 2 weeks “pre-reward” period
 • 10 weeks “reward” period
 • 2 weeks “post-reward” period
• 340 participants
 • 232 selected monetary reward (€3 - €7 per day)
 • 108 selected Yeti smartphone (earn credits to keep smartphone at end of experiment)
Realizing Behavioral Change That LASTS... is proving elusive!

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Total (%)</th>
<th>Prereward Period (%)</th>
<th>Reward Period (%)</th>
<th>Postreward Period (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving before peak hour (base)</td>
<td>34.2</td>
<td>23.4</td>
<td>37.2</td>
<td>24.9</td>
</tr>
<tr>
<td>Driving during peak hour</td>
<td>25.9</td>
<td>46.8</td>
<td>20.0</td>
<td>45.7</td>
</tr>
<tr>
<td>Driving after peak hour</td>
<td>17.5</td>
<td>13.3</td>
<td>18.7</td>
<td>13.9</td>
</tr>
<tr>
<td>Using carpool or carshare with family or friends</td>
<td>5.3</td>
<td>4.4</td>
<td>5.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Avoiding peak hour by using public transportation</td>
<td>10.3</td>
<td>4.7</td>
<td>11.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Avoiding peak hour by using bike</td>
<td>3.0</td>
<td>4.5</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Working from home</td>
<td>3.8</td>
<td>2.9</td>
<td>4.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Transport Controls and Behavior

- Let’s collect the data we need to understand
 - attitudes, behaviors, adoption and adaptation, and evolutionary dynamics…
- Take advantage of live experiments in the real-world
- Reflect behavioral evidence in transport models
- Acknowledge and accommodate high degree of uncertainty

It’s all about the human!
Thank you

Ram M. Pendyala
pendyala@asu.edu