Insights from Some Studies on Control in Traffic Networks

Srinivas Peeta
Georgia Institute of Technology
peeta@gatech.edu
Transportation Ecosystem

Infrastructure

Human

Vehicle
Transportation System

Supply

Demand

Technology
Control in Networks: Some Studies

- Real-time dynamic traffic network control
 - Time-dependent conditions
 - Stochasticity: demand, supply
 - Technology: Role of information
 - Traveler behavior

- How information/connectivity can be used to manage networks and their performance
 - Congested traffic networks
 - Disaster response – planning and operations
 - Connected and/or autonomous transportation
 - Collaborative freight networks
 - Organizational networks
Realism
- Traffic flow characteristics (analytical, simulation)
- Travel behavior (departure time/route/mode, learning & evolution, familiarity, risk-taking)
- Driver behavior (familiarity, experience, aggressiveness)

Factors
- Heterogeneity (traveler/driver/human/vehicle)
- Stochasticity (demand/supply)
- Time scale (behavior/planning/operations)
- Interactions (vehicle-human-infrastructure)

Goals
- State (description, prediction, evolution)
- Performance and control
Mathematical properties
- Realism in modeling vs mathematical tractability
- Complexity of traffic flows
- Traveler behavior and learning
- Stochasticity, heterogeneity, dynamics

Computational time
- Real-time needs
- Tradeoffs with accuracy
- Sensitivity issues under emerging technologies
Emerging Technologies

- Connectivity
 - Reliability
 - Congestion
 - Control
 - Security

- Automation
 - Stability
 - Mixed flows
 - Platooning
 - Traffic characteristics
 - Safety and mobility
Needs

- Human-vehicle interactions
 - Transition of control

- In-vehicle interactions
 - In-vehicle devices
 - Mobile apps

- Motion planning
 - Maneuvering
 - Platooning
 - Intersections

- Connectivity-based control
 - In-vehicle/personal devices
Needs

- Transition and mixed traffic flows
 - Level of automation
 - Level of connectivity
 - Vehicle characteristics
 - Asymmetry in human behavior
 - Differences in human and machine approaches to driving
 - Misperception of AV capabilities

- Data
 - What does it reveal?
 - How to connect disparate data?
 - How can it be used to enhance modeling realism?
 - Human in the loop
Insights: Some Problems Addressed

- **Platooning**
 - Cooperative braking control (CVs)
 - Under V2X communications
 - CV information transmission time delays

- **Vehicular traffic flow**
 - Sliding mode controller
 - Non-lane discipline
 - Leveraging vehicle characteristics under connectivity
Insights

Transportation community
- Control as a goal enabler
- Effectiveness, goals (mobility, safety, energy, emissions)
- Vehicular interactions (behavior, traffic flow theory)
 - Car-following, merge/diverge,
- Network-level
 - Traffic interactions, traveler/driver behavior, topology/infrastructure effects

Control community
- Focus on controller and its properties
- Convergence, stability, consensus
- Vehicle as individual agent (inter-vehicle gap, velocity)
 - Negative spacing/velocity, uncomfortable acceleration/deceleration
- Micro- and corridor-level
 - Lateral control, longitudinal control
Value in collaboration

- Increased role of technology, especially automation, as a catalyst
- Data as enabler (Google, Nvidia, etc.)
- Focus on realism

Opportunities

- Infrastructure
- Human
- Vehicle
Thank you!

Contact Information:
Srinivas Peeta
Email: peeta@gatech.edu