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The problem

e Traffic congestion responsible for 20% of fuel
consumption and 90% of CO in large urban
areas.

@ Cost of traffic congestion will reach $2.8T in
the US by 2030 (~ annual tax revenue).

@ On a per-driver basis, cost of traffic congestion
is $1740 annually in US/Europe.

@ Boston recently made news being declared #1
in hours lost in rush-hour traffic per driver in
2018.
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Congestion Maps for the Boston Area: 2012—2015
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https://salomonw.github.io/congestionmaps/DynamicPage/PM/index.html

(Salo Wollenstein)
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Transportation Network Models

@ Transportation network modeled as a graph.

@ Dynamics: Drivers have a congestion function function of flow
for each arc and pick the cheapest arcs to traverse. Collective
decisions lead to a Nash (Wardrop) equilibrium.

@ To control/design we need to build accurate predictive models.
e Data: Traffic flows.

@ Can we learn (the congestion function) from data?
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Price of Anarchy?
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@ Having the congestion function allows us to
answer many “what-if-questions”.

@ We can also formulate a problem to obtain a
socially optimal equilibrium.

@ Price-of-Anarchy:

Congestion under Selfish Behavior
Congestion under Socially Optimal Behavior

PoA =

@ Useful to assess how good/bad things are, but
also to design interventions.

1Zhang, Pourazarm, Cassandras, Paschalidis, CDC 2016, IFAC 2017,
Proceedings IEEE 2018.
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Boston Area Data?

Eastern Massachusetts
(EMA) Network

@ Spatial average speeds for
13,000 road segments for each
minute of 2012 (50 GB) and
2015 (130 GB).

o Capacity data in different
times-of-day: lanes, peak
vehicles counts, etc.

2
https://github.com/jingzbu/InverseVIsTraffic,
https://www.kaggle.com/jingzbu/ematransportation
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Price-of-Anarchy (2012)
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Road Congestion: Socially Optimal vs. User Optimal

“Spreading the traffic” results in:
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Control and Interventions

@ Sensitivities: Where to intervene?

@ Socially optimal route recommendations: Can be shown
that we can achieve the Socially Optimal solution
through User Optimal actions if users use a properly
modified congestion function!

)

o Easier to incorporate in apps, even enforce with
autonomous vehicles.
o Take the driver “out of the picture.”

g

© Change demand! Congestion pricing and incentives!
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Final remarks

@ We have developed a new general framework for modeling
driver behavior using data.

@ Policy space: How to address traffic allocation issues and
prevent NIMBY reactions?
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